

Oman eGovernment
Architecture Framework (OeGAF)

Solution Reference Model (SRM)

Government of Sultanate of Oman

Information Technology Authority

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Solution Reference Model

Page 2 of 141

Revision History

Version Date of

Revision

Prepared /

Updated By

Reviewed

By

Reason for

Change

Affected

Sections

1.0 30 Mar 10 IDA
International

OeGAF
Steering
Committee
and Core
Team

- -

1.4 28-Dec-
2013

ITA OeGAF
Core Team

Removed
obsoleted
information
and added
new
information

-

1.5 31-Jan-
2014

ITA OeGAF
Core Team

Move 2
domains from
TRM into SRM

All

1.6 10-Feb-
2014

Project
Manager

OeGAF
Core Team

Added
architecture
vision for
SRM; removed
Application
Portfolio;
added list of
figures &
tables;
removed
technical
standards into
separate
sections

All

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Solution Reference Model

Page 3 of 141

Table of Contents

1 Overview ... 9

1.1 Document Purpose .. 9

1.2 Objectives and Benefits of SRM ... 10

1.3 Background on Oman eGovernment Architecture Framework 11

1.4 Relation to Other OeGAF Reference Models ... 13

1.5 Scope of Solution Reference Model ... 14

1.6 Structure of SRM .. 16

1.7 Target Audience ... 18

1.8 SRM Design Principles .. 19

1.9 Governance of SRM ... 21

2 Right Solutioning for Government ... 22

2.1 Intent .. 22

2.2 Role of ICT Solutioning in OeGAF Architecture Vision 22

2.3 Guide for Government ICT Solutioning .. 23

3. Application Design and Development Technology Domain 32

3.1 Intent .. 32

3.2 Domain Design Principles ... 32

3.3 Application Development Methodology ... 33

3.3.1 Types of Application Development Methodologies .. 33

3.3.2 Programming Paradigm ... 34

3.4 Technology Categories and Technology Components 35

3.5 Architecture Design Considerations .. 42

3.5.1 Application Design .. 42

3.5.1.1 Tier Architecture .. 44

3.5.1.2 Design Pattern .. 51

3.5.1.3 Application Framework .. 52

3.5.1.4 Service-Oriented Architecture (SOA) .. 53

3.5.2 Application Development .. 55

3.5.2.1 Programming Languages .. 55

3.5.2.2 Coding Standards ... 55

3.5.2.3 Error Handling Standards .. 56

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Solution Reference Model

Page 4 of 141

3.5.3 Application Testing ... 56

3.5.4 Application Deployment .. 57

3.5.5 Application Configuration Management ... 58

3.6 Standards Classification ... 59

3.7 Technical Standards and General Standards .. 60

3.8 Best Practices ... 61

3.8.1 Development Methodology ... 61

3.8.2 Application Design .. 66

3.8.3 Application Development .. 69

3.8.4 Application Testing ... 72

3.8.5 Application Configuration Management ... 75

3.9 Obsolete Technologies .. 76

4. Service Access Domain ... 77

4.1 Intent .. 77

4.2 Domain Design Principles ... 77

4.3 Technology Categories and Technology Components 79

4.4 Architecture Design Considerations .. 86

4.4.1 Web Application Platform ... 86

4.4.1.1 Web Server ... 86

4.4.1.2 Web Proxy Server ... 86

4.4.1.3 Portal Server ... 87

4.4.1.4 Application Server ... 90

4.4.1.5 Integration Server .. 95

4.4.1.6 Database Server ... 95

4.4.1.7 Directory Service ... 95

4.4.1.8 Search Engine ... 96

4.4.1.9 Integration Broker .. 98

4.4.1.10 Transaction Processing Monitors .. 98

4.4.2 Internet and Intranet Access .. 98

4.4.3 Telephony Access .. 98

4.4.4 Collaboration Management .. 99

4.4.4.1 Electronic Mail ... 99

4.4.4.2 Instant Messaging ... 99

4.4.4.3 Short Message Service ... 99

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Solution Reference Model

Page 5 of 141

4.4.4.4 Collaboration Workspace .. 99

4.4.4.5 Video Conferencing ... 99

4.4.4.6 Enterprise Content Management (ECM) ... 99

4.5 Technical Standards and General Standards .. 102

4.6 Best Practices ... 103

4.6.1 Web Application Platform ... 103

4.6.1.1 Application Server ... 103

4.6.1.2 Integration Server .. 105

4.6.1.3 Database Server ... 106

4.6.1.4 Directory Server .. 107

4.6.1.5 Transaction Processing Monitor .. 107

4.6.2 Collaboration Management .. 108

4.7 Obsolete Technologies .. 112

5. Service Integration Domain ... 113

5.1 Intent .. 113

5.2 Domain Design Principles ... 113

5.3 Technology Categories and Components ... 114

5.4 Architecture Design Considerations .. 123

5.4.1 Service Oriented Architecture (SOA) ... 123

5.4.2 Business Process Management (BPM) .. 124

5.4.3 Enterprise Service Bus (ESB) .. 126

5.4.4 Repository .. 127

5.4.5 Integration Management .. 128

5.4.6 Application Integration .. 128

5.4.6.1 Data Integration ... 129

5.4.6.2 Workflow ... 131

5.4.6.3 Application Interface .. 133

5.4.6.4 Message-Oriented Integration ... 134

5.4.6.5 Service-Oriented Integration ... 134

5.4.6.6 Process-Oriented Integration .. 134

5.5 Technical Standards and General Standards .. 135

5.6 Best Practices ... 136

5.6.1 File Transfer Middleware .. 136

5.6.2 MOM ... 136

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Solution Reference Model

Page 6 of 141

5.6.3 Integration Management .. 136

5.6.4 Application Integration .. 137

5.7 Obsolete Technologies .. 138

APPENDIX SA-4 – Object Oriented Programming ... 139

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Solution Reference Model

Page 7 of 141

List of Figures and Tables

Figure SA-1: OeGAF Reference Architecture ... 12

Figure SA-2: Relation to Other OeGAF Reference Models 14

Figure SA-3: Structure of SRM .. 16

Figure SA-4: OeGAF Version 2.0 Architecture Vision .. 23

Figure SA-5: Oman Government Solutions .. 26

Figure SA-6: Technology Categories under Application Design and Development

Technology Domain ... 36

Figure SA-7: Mapping of Categories, Components and Standards for 37

Application Design and Development Technology Domain 37

Table SA-1: Application Design and Development ... 42

Technology Categories and Components .. 42

Figure SA-8: Application Development Conceptual Framework 43

Table SA-2: Tier Architecture ... 45

Table SA-3: Comparisons of Application Tiers ... 48

Figure SA-9: Technology Components of an N-tier application 49

Table SA-4: Client Types ... 50

Table SA-5: Standards Classification ... 59

Table SA-6: Use Case Template .. 64

Table SA-7: Guide to Application Tier .. 68

Table SA-8: Minimum Testing by Application Types .. 75

Figure SA-10: Mapping of Categories, Components and Standards for Service Access

Domain ... 79

Table SA-9: Service Access Technology Categories and Components 86

Table SA-10: Enterprise Application Servers Clustering Solution 91

Table SA-11: Comparison of .NET and J2EE Application Servers 95

Figure SA-11: Universal Search Engine ... 97

Figure SA-12: Transaction Process Monitor ... 108

Figure SA-13: Mapping of Categories, Components and Standards for Service

Integration Domain ... 115

Table SA-12: Service Integration Technology Categories and Components 123

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Solution Reference Model

Page 8 of 141

Figure SA-14: Overview of SOA Reference Architecture 124

Table SA-13: Types of Interface Tiers .. 129

Table SA-14: Data Integration Strategy .. 131

Table SA-15: Development Methodologies .. 140

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Solution Reference Model

Page 9 of 141

1 Overview

1.1 Document Purpose

Government services to the citizens, residents and commercial establishments

can be improved through technology standardisation and service integration

amongst the Oman government agencies.

The purpose of the SRM is to document four architecture elements, namely the

Application Design and Development Technology, Service Access domain,

Service Integration domain and the Application Portfolio.

The Application Design and Development Technology domain describes the

recommended application design and development methodology and technical

standards. Standardisation on the use of application technologies is necessary

so that common business functions and information can be shared amongst

government agencies. Application technology standardisation is also a

fundamental requirement before government agencies can integrate their

various functions as a seamless government service to the citizens and

commercial establishments.

Service Access domain defines the technology categories, technology

components and associated standards for access channels that allow users to

interact with the requested applications and for the applications to communicate

responses to the users. It highlights key architecture design considerations and

recommends best practices for service access implementation.

Service Integration domain describes defines the various service integration

technology categories, technology components and associated standards. It

highlights the key architecture design considerations and recommends best

practices for implementing service integration solutions.

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Solution Reference Model

Page 10 of 141

The Application Portfolio describes the Information and Communication

Technology (ICT) solutions that can improve integration of government services

through sharing and re-use of applications and their components amongst

government agencies. The application portfolio is used to explore and find

opportunities for application sharing, re-use and improvements.

1.2 Objectives and Benefits of SRM

The SRM is the main component of Oman eGovernment Architecture

Framework (OeGAF) that describes the ICT solutions that provides technology

standardisation and service integration so as to improve and enhance

government functions. The SRM aims to encourage the re-use of applications

and their components to derive economies of scale for the Oman Government.

The SRM analyses current limitations and gaps, and lists the opportunities for

consolidation and integration of ICT solutions. Besides cost efficiency, the

recommendations from the SRM would enable government agencies to provide

more integrated government services to the citizens, residents and commercial

establishments. With the SRM, the Oman government agencies would be more

responsive to the needs of the citizens, residents and commercial

establishments in providing convenient, integrated and faster turnaround

services.

With proper follow through, the SRM will bring about the following potential

benefits:

(a) Improve government services to stakeholders (citizens, residents and

commercial establishments)

(b) Enhance interoperability across government agencies

(c) Leverage on current ICT investment and assets; and reduce Oman

Government’s total cost of ownership on future ICT investments

(d) Align agencies ICT projects to shared services and central ICT initiatives.

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Solution Reference Model

Page 11 of 141

1.3 Background on Oman eGovernment Architecture

Framework

OeGAF consists of four main architectures as follows:

(a) Business Architecture

(b) Solution Architecture

(c) Information Architecture

(d) Technical Architecture

Each of the architecture has a corresponding Reference Model. Each

Reference Model describes a framework to define and organise the architecture

elements. Figure SA-1 depicts the overall OeGAF Reference Architecture.

(need to replace diagram)

Data Centre
Network
Platform

Service Integration
Service Access

SOLUTION ARCHITECTURE

BUSINESS ARCHITECTURE

Data Hubs

INFORMATION ARCHITECTURE

S
e

c
u

r
i

t
y

TECHNICAL ARCHITECTURE

Application Design and Development

Oman Government Application Portfolio

Business Functions

Data Management

Government Lines of Business

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Solution Reference Model

Page 12 of 141

Figure SA-1: OeGAF Reference Architecture

The OeGAF four Reference Models are:

The Business Reference Model (BRM) describes the different lines of

business and the associated government functions of the Oman Government

that cut across the boundaries of different agencies.

The Solution Reference Model (SRM) describes the common applications

and application components that can be shared across the Oman Government.

It includes the technical standards and security considerations pertaining to the

design and implementation of solutions and applications.

The Information Reference Model (IRM) lists the data definitions and data

elements of common and shared data that are used across the Oman

Government. As part of the initial baseline scope, IRM describes the data

pertaining to ‘Person’, ‘Establishment’ and ‘Land’ data hubs which are

commonly used by various agencies’ applications. It also defines technical

standards, design and security considerations and best practices related to the

management of data.

The Technical Reference Model (TRM) defines the infrastructure

technologies and their respective technical standards to enable better system

integration and interoperability across the Oman Government. It also defines

the security considerations and standards related to the infrastructure

technologies.

The mention of the technologies and technical standards in the TRM, IRM and

SRM is to provide logical and easy reference for readers.

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Solution Reference Model

Page 13 of 141

1.4 Relation to Other OeGAF Reference Models

The SRM is the main component of OeGAF that links government functions,

ICT solutions, data hubs, technologies and technical standards. The relations

of SRM to the other reference models are as follows:

(a) The SRM follows up on the recommendations by the BRM for

consolidation and integration of ICT systems to support the streamlining,

integration and optimisation of business processes. For example,

through the BRM, there is a need for a One-Stop-Shop system to be

enhanced that allows online application of all commercial establishment

licenses. The SRM provide a more detailed ICT solution description on

the One-Stop-Shop system.

(b) The lines of business and government functions defined in BRM will aid

the discovery of data required by the government functions that will result

in the creation of conceptual data model where the following central

repositories can be easily identified with detailed definition in IRM:

(i) Central repository of data on citizens and residents required to

support the Civil Event Records Maintenance function (Person Hub)

(ii) Central repository of data on commercial establishments required

to support the Licensing and Regulatory Control of Commercial

Establishments function (Establishment Hub)

(iii) Central repository of data on land information required to support

the City Planning and Development function and Land, Building and

Public Facilities Development and Management function (Land

Hub).

The SRM references the IRM’s data hubs and data management

technologies for the development and deployment of applications to

support the above government functions.

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Solution Reference Model

Page 14 of 141

(c) The SRM leverages on the TRM’s infrastructure technologies, technical

standards and central infrastructure initiatives such as the Oman

Government Network and the Oman eGovernment Services Portal.

Figure SA-2 below provides a pictorial overview of how the SRM is related to

BRM, IRM and TRM.

(need to replace diagram)

Figure SA-2: Relation to Other OeGAF Reference Models

1.5 Scope of Solution Reference Model

As described above, the SRM has three main architecture elements –

Application Design and Development Technology domain, Service Access

domain and Service Integration domain.

The Application Design and Development Technology domain provides the

following information:

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Solution Reference Model

Page 15 of 141

(a) A standard application development methodology that describes the

various aspects of application development and deployment life cycle

(b) A list of architecture design factors for consideration to aid agencies in

application development

(c) A list of mandatory and recommended technical standards for agencies

to comply, and

(d) Best practices in the various steps of application development.

The Service Access domain provides the following information:

(a) A list of possible service channels that the public and government

employees can access

(b) A list of architecture design factors for consideration to aid agencies in

selecting the right access channels

(c) A list of mandatory and recommended technical standards for agencies

to comply, and

(d) Best practices in service access provisioning.

The Service Integration domain provides the following information:

(a) A standard application development methodology that describes the

various aspects of application development and deployment life cycle

(b) A list of architecture design factors for consideration to aid agencies in

technical integration

(c) A list of mandatory and recommended technical standards for agencies

to comply, and

(d) Best practices in the various integration methods.

The first version of OeGAF provided the Application Portfolio for the Oman

Government. In essence, the Application Portfolio is an updated list of the main

applications in the government agencies. The Application Portfolio reviews how

current applications support the government functions and how common data

are accessed by the applications. The Application Portfolio, upon careful

analysis, also recommends the target state comprising of various ICT solutions

to improve the integration of government services.

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Solution Reference Model

Page 16 of 141

As ITA would continue to update the Application Portfolio, it is no longer

considered as an important architecture element in the SRM. ITA, however,

would use the Application Portfolio for references before providing

recommendations and advices to government agencies.

1.6 Structure of SRM

As shown in Figure SA-3, the SRM consists of three main domains – Application

Design and Development Technology, Service Access and Service Integration

domains.

Figure SA-3: Structure of SRM

The Application Design and Development Technology Domain addresses the

following:

(a) How to design, develop and test the applications?

(b) What are the application standards to comply with?

(c) What are the application design considerations and best practices?

The Service Access Domain addresses these questions:

(a) How and what channels users can access to eServices and information?

SRM

Application

Design
And

Development
Domain

Service

Access

Domain

Service

Integration

Domain

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Solution Reference Model

Page 17 of 141

(b) How applications communicate responses to users?

(c) What are the design considerations and best practices for service access

implementation?

The Service Integration Domain addresses the following:

(a) What are the various service integration technology components?

(b) What are the various service integration standards?

(c) What are the design considerations and best practices for implementing

service integration solutions?

The contents of the three technical domains are structured as follows:

(a) Intent

Describes the intent of the technology domain

(b) Domain Design Principles

Describes the domain design principles

(c) Technology Categories and Components

Lists the technology categories and their components

(d) Architecture Design Considerations

Describes the key design considerations when developing an application

(e) Technical Standards and General Standards

Lists the mandatory and recommended technical standards for

application development and deployment

(f) Best Practices

Describes the international best practices in application development

(g) Obsolete Technologies

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Solution Reference Model

Page 18 of 141

Describes the list of obsolete solution technologies that government

agencies have to comply (i.e. government agencies cannot use these

obsoleted technologies).

The Application Design and Technology Domain will have an extra section below:

(a) Application Development Methodology

Describes the recommended application development methodology for

adoption by government agencies.

1.7 Target Audience

The SRM is a reference that provides an insight to both ICT solutions and

technical-oriented application technology domain. The target audience for the

SRM are as follows:

(a) ICT Planners / Architects (ITA and Agencies)

The SRM together with the BRM and IRM can be used by the strategic

planners and architects in ITA to identify potential shared / common

solutions for the use by all government agencies. On the other hand,

government agencies can use the SRM to guide their planning and

development of new or revamped ICT systems. In addition, for agencies

developing their very own specific solution reference models, the SRM

is an important reference that can help agencies to architect its own set

of solutions that are aligned with OeGAF.

(b) ITA Project Managers

The project managers in ITA can reference the SRM in planning and

managing the central initiatives and projects for the Oman Government.

(c) ICT System Owners in Agencies

ICT system owners can reference the SRM to leverage on the shared

services or central initiatives. By knowing the availability of common

systems, system owners can avoid building duplicate systems.

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Solution Reference Model

Page 19 of 141

(d) ICT Directors / Managers in Agencies

The ICT directors and managers can reference SRM to understand the

best access channels for the public, while considering the efficient ways

of application integration. The SRM can help in the strategic planning

process and identify potential shared / common applications across

agencies or within the agency. They must also comply with the

application technology standards in the development of their

applications.

(e) ICT Vendors

ICT vendors should use this document to propose and implement ICT

systems that comply with the standards stated in the three domains. ICT

vendors can also refer to SRM to architect government agencies’

application architectures.

1.8 SRM Design Principles

Design principles, which describe the preferred directions, aspired attributes

and practices, are required to guide the development of the architecture. The

following are the overarching Solution Architecture design principles while

specific domain design principles for the three domains are respectively

described within the domain sections.

Principle 1: Use Current Appropriate ICT Solutions to meet the

Government Business Needs and Operational Requirements

ICT solutions need not necessarily be new. Current and appropriate ICT

solutions, where possible, should be leveraged to meet business needs and

budgets.

Principle 2: Optimise and Share Government ICT Solutions for Cost-

Effectiveness

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Solution Reference Model

Page 20 of 141

There are many current solutions used amongst the Oman government

agencies. A sound working solution in one government agency could potentially

be used in the other agencies. The sharing or re-using of these solutions would

lower the overall Total Cost of Ownership for the Oman Government.

Principle 3: Design for Serviceability, Reliability, Availability and

Scalability

Developing and maintaining government-wide solutions require thorough

planning and design. Solutions have to be easily serviceable (i.e. easily change

or amend when necessary), reliable (i.e. perform the function as promised to

users), available (i.e. the service is online as stipulated to users), and scalable

(i.e. can support the increase in number of users or transactions). These

features will provide performance and confidence amongst users accessing

government services 24x7 (access anywhere and anytime).

Principle 4: Promote Agility and Quality in the Government ICT Solutions

The government solutions have to be agile to support the fast and constant

changes to government business requirements. Quality solutions ensure that

the service level business requirements are met. These government solutions

are effective when they can be quickly adapted, without compromising on

quality, to meet the changing demands.

Principle 5: Ensure Security in the Development, Implementation and

Management of Government ICT Solutions

The government solutions have to be secured. With increased service delivery

over the Internet, security considerations and standards have to be in place.

Any security lapses will result in bad reputation, mistrust and incur damages.

Principle 6: Use ICT Solutions that support Open, Vendor-Neutral

Standards and Best Practices with Wide Industry Acceptance

To protect investments in government applications and solutions, it is logical

not to be locked-in to one vendor. ICT solutions have to be vendor and platform

independent as much as possible. In addition, solutions with wide industry

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Solution Reference Model

Page 21 of 141

acceptance should be selected as the vendors have to cater for global

requirements and support.

1.9 Governance of SRM

The ongoing management and execution of SRM is part of the overall

governance of OeGAF. It includes reviewing and updating the three technical

domains.

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Solution Reference Model

Page 22 of 141

2 Right Solutioning for Government

2.1 Intent

The intent of this section is to aid government agencies in choosing and

implementing the right ICT solutions that support the business functions and

processes as defined or prioritised in BRM.

2.2 Role of ICT Solutioning in OeGAF Architecture Vision

Figure SA-4 below illustrates the OeGAF Architecture Vision. In BRM Section

3, it was stated how the government functions and processes will drive the

implementation of relevant ICT solutions, information/data and infrastructure to

deliver quality eServices to the beneficiaries.

Similarly in BRM Section 3, there is a set of guidelines on “Improving

Performance of Government Functions”. After the identification of the prioritised

business functions and improved business processes, SRM aims to provide

options for the “Presentation” and “ICT Solutions” layers as highlighted in the

figure below. This section, therefore, describes the importance of choosing the

appropriate ICT solutions. Government agencies need not use the latest

technologies, but rather to implement the right ICT technologies and

methodologies that meet the business requirements.

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Solution Reference Model

Page 23 of 141

Oman Gov

eServices

Portal
National

Call Center

Government

Citizen

Center

Presentation

personalisation
Government

Website

Government

Mobile

Applicatione-accessibile
Manual

Counter

Social Media

Infrastructure

Service 1

Infrastructure

Service N. . .

Integrated /

Improved

Process 1

Integrated /

Improved

Process N
. . .

Gov Primary

Function &

Process 1

Gov Primary

Function &

Process N

Gov Enabling

Function &

Process 1

Gov Enabling

Function &

Process N

Agency

Business
.

Shared

ICT

Solution 1

Shared

ICT

Solution N
. . .

Agency

ICT Solution
Core ICT

Solution 1

Core ICT

Solution N

Supporting

ICT

Solution N

Supporting

ICT

Solution 1

.

Data

Hub 1

Data

Hub N
. . .Agency

Information

Core

Data 1

Secondary

Data 1

Core

Data N

Secondary

Data N
.

OeGAF Architecture Vision (Version 2.0)

Agency

eServices &

Information
G2C G2B G2E

Walk-In

InternetConnectivity

Agency

Infrastructure

CITIZENS &

RESIDENTS GOVERNMENT

EMPLOYEES
Beneficiaries COMPANIES /

BUSINESSES

G2G G
O

V
E

R
N

M
E

N
T

 A
G

E
N

C
IE

S
P

A
R

T
N

E
R

S

INDIVIDUAL AGENCY FOCUS GOVERNMENT-WIDE FOCUS

Shared

Service

1

Shared

Service

N
. . .

Assisted-Service

Access

Channel

Kiosk

Mobile

Computer

Self-Service (e-accessible)

Face-To-

Face

Mobile

Figure SA-4: OeGAF Version 2.0 Architecture Vision

2.3 Guide for Government ICT Solutioning

The following steps will guide government agencies to implement the right ICT

solutions:

(i) Understand Your Business Requirements

It is important to start by understanding the actual business

requirements. Government agencies have to prioritise their government

functions and sub-functions, and to carry out a set of selective business

process improvements. The outcomes of these prioritised government

functions and business process improvements would lead to the actual

business requirements.

(ii) Develop Solutions at Presentation Layer

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Solution Reference Model

Page 24 of 141

In order to reach the public and government employees through the

various access channels, each government agency has to provide the

following solutions:

(a) Counter Service

Currently, most services are provided via the counter (or face-to-

face). While counter service will continue, government agencies

must attempt to reduce them as much as possible. As part of the

Oman eGovernment Transformation Plan, government agencies

have to migrate and automate their counter services into eServices

where possible.

(b) Government Agency Website

Information and eServices, as much as possible, can be delivered

over the government agency’s website. As according to ITA’s

policy, government agency website has to support both Arabic and

English.

(c) Government Mobile Application

Each government agency should consider providing its information

and eServices over mobile applications. The government agency

mobile application must be easily downloaded with regular

updates.

(d) Social Media

To be effectively connected with the public, government agencies

should consider implementing formal pages in the social media.

Latest information can be easily pushed to the public, while

comments and discussions can also be carried out.

(e) Leverage on Government-Wide Shared Services or Central

Initiatives

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Solution Reference Model

Page 25 of 141

From a government-wide perspective, government agencies

should consider leveraging on the currently available shared

services or central initiatives. This would speed up implementation

and aid government-wide integration. Please refer to Shared

Services and Central Initiatives for more details.

(iii) Develop General eServices (General eServices Layer)

When we zoom into the ‘Agency ICT Solution’ layer of the OeGAF

Architecture Vision, we get the details as shown in Figure SA-5. Instead

of developing solutions for each application or each eService, it is highly

recommended that government agencies develop their very own general

re-usable eServices. As part of Service-Oriented Architecture (SOA),

these general eServices are built once but can be re-used for numerous

times. Government agencies are recommended to leverage on potential

government-wide general eServices.

Examples of Individual Government Agency general eServices are:

(a) Search Service

It is a common need for any user - either through a counter service,

a webpage, a mobile application or a call centre – to search for

specific information. Instead of developing search for each

application, it is recommended that government agency develops

its own search service.

(b) News & Events Service

This eService is to provide the relevant updates relating to news or

events. When there is specific news or events, the information can

be broadcasted to the users via their preferred communication

channel such as email, SMS, website link, social media link or

application.

(c) ePoll / eSurvey Service

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Solution Reference Model

Page 26 of 141

A useful eService to carry out various polls and surveys.

(d) eHelp & FAQ Service

This would be a common eService to help the user and to address

frequently-asked questions (FAQs).

(e) Social Media / Sharing Service

An important service that provides common links to the various

government agency’s social media pages.

(f) Feedback Service

Another important service to receive feedback, comments and

complaints.

OeGAF Architecture Vision (Version 2.0)

Oman Government Solutions

INDIVIDUAL AGENCY FOCUS GOVERNMENT-WIDE FOCUS

Solution

Administration

Authorisation

Service

Validation &

Verification

Service

Rules

Processing

Service

Error

Handling

Service

Solution

Monitoring

Service

Exceptions

Management

Service

Solution

Workflow

Service

Logging &

Audit Service

Reporting

Service

Print / Batch

Processing

Service

General eServices
Search

Service

News &

Events

Service

ePoll /

eSurvey

Service

eHelp & FAQ

Service

Social

Media /

Sharing

Service

 Feedback

Service

eServices

Management

Request

Validation

Service

Request

Acknowledgment

Service

Status

Enquiry

Service

Personalisation

Service
Alert Services

Education

Admission

System

Al-Shifa

System

Integrated

Judicial

Management

System

Integrated

Manpower

Register

System

One Stop

Shop System

Customs Single

Window

Integrated

System

Integrated

Taxation

System

Service

Authentication
Service

Authorization

Service

Orchestration

Service

Registry

Message

Routing

Service

Message

Queuing

Service

Complaint

Service
 Suggestion

Service

Authentication

Service

Single SignOn

Service

ePayment

Service

Civil Service

HRM System

Integrated

Financial

System

Solution

Provision

Core ICT

Solution

(Primary

Function 1)

Core ICT

Solution

(Primary

Function N)

ICT Solution

(Enabling

Function 1)

ICT Solution

(Enabling

Function N)
.

Figure SA-5: Oman Government Solutions

(iv) Develop eServices Management Solutions (eServices Management

Layer)

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Solution Reference Model

Page 27 of 141

Similarly like the above, a suite of management eServices can be

developed. As part of SOA, these management eServices can be called

or referenced by the actual eServices. Government agencies should

leverage on government-wide eServices Management modules where

available.

Below is the recommended set of management eServices to be

developed by each government agency:

(a) Request Validation Service

During the actual eService transaction, there will be a need for

validation of data entered by user. By calling this service, certain

validations can be carried out such as checking the validity of

Citizen ID, Government Employee ID/Number, CR Number and

even Credit Card number format. In addition to these validation

examples, each government agency should develop other in-house

validation services for data with the highest number of transactions.

(b) Request Acknowledgment Service

Upon the completion of data validation, this service is to

acknowledge that the user has submitted an eService request. This

service could also inform the expected eService process duration

and other related information. Below is an example of an eService

acknowledgment.

(c) Personalisation Service

Over time as eService is common, users will demand for some

personalisation service. This is a value-added service that will

delight or please the users. Examples of the personalisation

Your service request has been validated and received. We will

process your request and respond back to you within N days/hours.

You could also check the update status of your request using the

Request Number {XXX-DDMMYYYY-NNN}. Thank you.

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Solution Reference Model

Page 28 of 141

parameters include preferred communication channel (email /

SMS), preferred website landing page, preferred city / town for

interaction and preferred ePayment mode.

(d) Status Enquiry Service

For certain transactions, there is a need for users to track the status

of their eService requests. Hence, this service would allow the

users to do a self-service enquiry using the Request Number.

(e) Alert Service

On certain occasions, users want to be alerted or notified when a

specific condition developed. For example, when the eService

request has been processed, a payment will automatically be

carried out. With the alert service, the user will be informed that the

request was completed and a payment will be deducted from the

user’s preferred bank account.

(v) Develop General Re-Usable Administrative Application Services

(Solution Administration Layer)

As part of good SOA practice, it is more efficient and effective to

implement a suite of re-usable administrative application services. In

essence, these services will be highly re-used by the various applications

resulting in faster application development and implementation.

Government agencies are recommended to leverage on government-

wide administrative re-usable application services where available.

Below is a list of the recommended re-usable administrative application

services to be developed by government agencies:

(a) Authorisation Service

A central service that authorises internal and external access to

applications owned by the government agency. Note that this

service is normally carried out after the authentication service.

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Solution Reference Model

Page 29 of 141

Government agencies are encouraged to leverage on the

government-wide authentication service for the public and

government employees.

(b) Validation & Verification Service

This service carries out the typical validation of data entered into

the application system – for example date entered must be in DD /

MM / YYYY format. It also verifies the data entered – for example

the tourist visa request date entered has to be greater than the

current date but not greater than a year from the current date. It is

recommended to develop many highly re-usable validation and

verification checks. Note that this service is called via an application

where it would eventually be used as part of the validation in the

eService.

(c) Exceptions Management Service

While many rules and conditions can be computed and

programmed, there will always be exceptions. Thus this is a useful

service to manage exceptions.

(d) Error Handling Service

It is important that users get informative and consistent error

messages. Depending on the error, this service would provide the

actual respective error message(s).

(e) Rules Processing Service

It is not a good programming practise to ‘hard code’ the processing

rules into the programs or solutions. Instead, with the use of

commonly defined rules and conditions in a central repository, this

service can read the repository and process the request

accordingly. This service allows business requirements to be

dynamic.

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Solution Reference Model

Page 30 of 141

(f) Solution Monitoring Service

There is always a need to monitor the health status of a solution or

application – in particular critical application during peak periods.

This service monitors the solution status and updates to the various

interested parties such as ICT staff, ICT vendors and business

owners.

(g) Solution Workflow Service

As ICT solutions have to support the business processes, it is

common that workflows have to be automated and monitored. This

service allows workflow to be defined and integrated.

(h) Print / Batch Processing Service

This service provides print and/or batch processing. For example,

at the end of each month, all the government employees’ salaries

are processed, printed into e-salary and distributed securely to

each individual government employee.

(i) Reporting Service

When applications are built in silos, they would develop their own

reports. This service, on the other hand, would aid the integration

of data and reporting that would be useful for business owners and

management staff.

(j) Logging & Audit Service

All eService and application transactions have to be logged. This

service provides standard transaction logging and allows access to

the transaction logs for audit purposes.

(vi) Implement Core ICT Solutions (Solution Provision)

Government agencies are highly encouraged to firstly develop and

implement core ICT solutions that would automate or improve their

primary functions and processes. This would be followed by the

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Solution Reference Model

Page 31 of 141

implementation of ICT solutions that support their enabling government

functions and processes. Government agencies are also recommended

to leverage on government-wide ICT solutions where possible. Note that

ICT automations are implemented only after the business processes

have been reviewed and improved as recommended in BRM.

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Solution Reference Model

Page 32 of 141

3. Application Design and Development Technology

Domain

3.1 Intent

The Application Design and Development Technology Domain defines the

domain design principles, application development methodology, application

technology categories, technology components and associated standards. It

highlights key architecture design considerations and recommends best

practices.

3.2 Domain Design Principles

The following are the Application Design and Development Technology Domain

design principles:

Principle 1: Reduced Application Complexity

While applications are required to automate the business functions and

requirements, the applications developed need not be complex. Reducing the

application complexity, or making the application as simple as possible, is

regarded as a well-designed application.

Principle 2: Implementing Widely Adopted Standards can Facilitate the

Adaptability, Reuse and Cost-effectiveness of Applications

Applications have to be adaptable to meet the changing business requirements.

Reuse components of applications will allow faster application development.

The use of widely adopted standards in application design and development

assures that the application is modular and well-structured which will result in

the adaptability of the application to easily change, allow application reuse and

results in cost-effectiveness as the effort for application development and

maintenance reduced.

Principle 3: Ensure Security in the Application Design and Development

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Solution Reference Model

Page 33 of 141

Security has to be considered at the onset from application design. Security is

not an end-product, but rather it should be integrated in the application

development lifecycle.

3.3 Application Development Methodology

3.3.1 Types of Application Development Methodologies

There are broadly two types of application development – the waterfall and

iterative methodologies.

The waterfall methodology focuses on structured progression at the defined

phases of application development. Each phase consists of a definite set of

activities and deliverables that must be accomplished before progressing to the

next phase. With the waterfall approach potential changes can be easily

analysed, large distributed teams can be coordinated, and project budgets are

predictable as there are defined phases. On the other hand, the weaknesses

of the waterfall approach include lack of flexibility, difficulty in predicting actual

outcomes for the software, discouragement of team cohesion, and the tendency

to not discover design flaws until the testing phase.

Iterative methodology focuses on building a highly skilled and tightly knit team

that stays with the project from beginning to end. The formal project

deliverables are commonly the actual working software and the essential

system documentation that is completed at the end of the project. Rapid

feedback from users increases the usability and quality of the application, early

discovery of design flaws, an ability to easily roll-out functionality in stages, a

more motivated and productive team, and finally knowledge retention for the

duration of the project are often observed from this approach. However,

drawbacks such as difficulty in coordinating large projects, the possibility for the

project to never end, a tendency to not thoroughly document the system after

completion, and the difficulty in predicting exactly what features will be possible

within a fixed time or fixed budget. Iterative methodology may take various

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Solution Reference Model

Page 34 of 141

forms such as agile programming, extreme programming (XP), rapid application

prototyping and Scrum.

Both the waterfall and iterative methodologies can be used for application

design and development. Appropriate mixture of both approaches can often

produces benefits and success in project. The right choice of application

methodology would depend on a case-to-case basis; however it is common to

have a mixture of the two methodologies for large or complex application

development projects.

3.3.2 Programming Paradigm

Procedural programming involves writing code that is as concise as possible

and coding directly for the end result. Most procedural programming uses

targeted groups of functions that immediately address the problem at hand. If

the project grows large, the developer or developers could end up having to

maintain a large number of individual functions, and in some cases, the logic of

different functions can become confusingly similar and difficult to maintain.

Object-Oriented programming (OOP) focuses on abstract relationships and an

hierarchy of related functionalities. Similar functionalities can share common

codes, making maintenance much easier. Code reuse is increased as well, as

ease to adapt the abstracted base functionality for new tasks. OOP also can

aid in large-scale program design, helping encapsulate and categorise the

different sets of functionality required by each part of the system.

OOP techniques can help software development in the following ways:

(a) Abstraction

(i) Modelling of real-world objects makes it easier to describe and

communicate behaviour

(ii) Objects are a natural way of creating, packaging and using

software components

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Solution Reference Model

Page 35 of 141

(b) Encapsulation of knowledge means that behaviour can be isolated; this

in turn means that changes in requirements can be accommodated

without affecting the entire system

(c) Inheritance allows us to re-use objects that have already been created

(d) Polymorphism provides the ability to hide many different

implementations behind a single interface

While both procedural and OOP can be implemented, modern programming

languages, in particular for mobile application development, focus on OOP.

Refer to Appendix C for the details of OOP.

3.4 Technology Categories and Technology Components

Application Lifecycle Management integrates design, development, testing,

deployment and configuration management as shown in Figure SA-6. It cuts

maintenance time by synchronising application design and maximises

investment in skills, processes and technologies.

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Solution Reference Model

Page 36 of 141

Figure SA-6: Technology Categories under Application Design and

Development Technology Domain

As each process in the Application Lifecycle Management uses various

technologies, each of these five processes would naturally become a

technology category.

Figure SA-7 shows the association between the technology categories,

technology components and its relevant standards.

Technology
Categories

Application
Design

Application
Development

Application
Testing Application

Deployment

Application
Configuration
Management

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Solution Reference Model

Page 37 of 141

Figure SA-7: Mapping of Categories, Components and Standards for

Application Design and Development Technology Domain

Table SA-1 below describes both the technology categories and technology

components of the Application Design and Development Technology Domain.

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Solution Reference Model

Page 38 of 141

Technology Categories Technology Components

Application Design Tier Architecture

In tier architecture, the software components of an

application are structured into “logical” layers or

parts. Each tier interacts with only the tier directly

below, and has specific function that it is

responsible for. Typically, the application is

structured into three tiers:

(a) Presentation

(b) Business logic

(c) Data access

Design Pattern

A design pattern is a solution to a frequently

occurring software scenario. Software design

patterns serve as examples of reusable designs

that have proven themselves in practice.

A design pattern captures the essential insights, so

that others may learn from it, and make use of it in

similar situations. Studying patterns of a

development situation and its solutions provides a

level of problem recognition and a general

formulation of a solution. The pattern should be

adapted to the context in which it is being used.

Application Framework

A framework is a set of classes and interfaces that

co-operate to solve a specific type of software

problem. It is these interconnections that provide

the architecture and design so that developers can

free themselves from building the infrastructure

and concentrate on writing codes that extend the

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Solution Reference Model

Page 39 of 141

framework behaviour to suit the business

requirements.

Service-Oriented Architecture (SOA)

SOA provides a set of principles or governing

concepts used during phases of systems

development and integration. Service-orientation

requires loose coupling of services with operating

systems, and other technologies that underlie

applications. SOA separates functions into distinct

units, or services, which developers make

accessible over a network in order to allow users to

combine and reuse them in the production of

applications.

Application Development Programming Languages

A programming language is an artificial language

designed to express computations that can be

performed by a computer.

There are various generations of languages (2G –

4G), which were developed to meet different

requirements and objectives.

Coding Standards

Code written in a consistent manner will be more

maintainable and robust. Application development

teams should set and follow the coding standards.

It also helps new developers coming into the

project to easily pick up and understand the codes.

Error Handling Standards

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Solution Reference Model

Page 40 of 141

Reliability is a major characteristic of high-quality

software. During the development, consistent error

handling will enhance the quality of the code and

produce a robust and resilient application.

Application Testing Testing Methodology

Testing methodology refers to a set of rules and

practices used to test a system.

The cost of defect identification and correction

increases exponentially as the project progresses.

As such, defects should be identified and corrected

early. To do so, testing activities should be

conducted throughout the different phases of the

software development life cycle.

Static Testing

The process of testing a system or component

based on its form, structure, content or

documentation is known as static testing.

Dynamic Testing

The process of testing a system or component

based on its behaviour during the execution of a

computer program is known as dynamic testing.

Application Deployment Application Deployment Activities

Activities that make a software system available for

use. After the application has been developed and

tested, it has to be deployed for production or “go

live”. The main activities include configuring the

production environment, executing job scripts to

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Solution Reference Model

Page 41 of 141

transfer the application from testing to production

environment, and loading initial data into

production database.

Application Configuration

Management

Software Control

Identifies the functional and physical attributes of

software at various software development phases

and performs systematic control of changes to the

identified artifacts for the purpose of maintaining

software integrity and traceability throughout the

software development life cycle.

Configurable items include:

(a) Application source code

(b) Scripts

(c) Commercial-off-the-shelf (COTS)
software

System Configuration

Documents the infrastructure requirements for

application to execute successfully (e.g. enterprise

application may require certain ports/services to be

opened at agency’s firewall, or permanent TCP

connection is required to be established across

network segments)

Configurable items include:

(a) Operating System (OS)

(b) System patch

Document Control

Identifies and controls project documentation (e.g.

project plan, schedule and budget) that will change

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Solution Reference Model

Page 42 of 141

Table SA-1: Application Design and Development

Technology Categories and Components

3.5 Architecture Design Considerations

3.5.1 Application Design

Application design and development tools and technologies have been evolving

rapidly in an increasingly distributed and real-time business environment.

Figure SA-8 describes a conceptual framework that illustrates the relationship

amongst the various elements of an application. The capabilities, tiers and

layers are inherently orthogonal, which make the architecture a collection of

tradeoffs and decisions. Hence application design requires all these factors to

be taken into consideration.

during the software development life cycle.

Configurable items include:

(a) Project plan, schedule and budget

(b) Requirement specifications

(c) Design documents

(d) Functional specifications

(e) Test plans and results

(f) User and administrator guides

(g) Project process and procedures

(h) Project standards

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Solution Reference Model

Page 43 of 141

(need to replace with new diagram)

Figure SA-8: Application Development Conceptual Framework

Layers are abstractions of the underlying implementations of the application.

The platform layer is the operating system. The middleware layer is the

operating environment such as a web, application or database server. The

application layer is the highest level that contains the presentation, business

and data logic.

Tiers are logical and NOT physical divisions of a system and are differentiated

by their assigned roles and responsibilities. For example, all tiers can exist in

one machine or each tier resides in separate machine. A typical application

consists of three tiers: presentation, business logic and data access tier. The

presentation tier focuses on interacting with users. The business logic tier

determines the business process and rules of the application. The data access

Platform

Application

Middleware

S
e

c
u
ri
ty

A
v
a

ila
b
ili

ty

M
a
in

ta
in

a
b

ili
ty

S
c
a

la
b
ili

ty

P
e

rf
o

rm
a

n
c
e

Layers

Tiers

Capability

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Solution Reference Model

Page 44 of 141

tier manages the storage and retrieval of data from data resources such as

databases and files.

Capabilities are non-functional, observable system qualities that do not

represent specific functions and cannot be satisfied by any one component.

These are properties that are observed in a collection of components working

together.

3.5.1.1 Tier Architecture

As mentioned earlier, an application can be logically structured into three tiers:

presentation, business logic and data access. The way these three tiers are

partitioned in an application will give rise to different types of the application

design.

Tier Type Definition

One-tier or Monolithic
Application

These are applications where the code that

implements the presentation, business rules,

and data access are tightly coupled together as

part of a single application that runs on a single

computer in a non-distributed manner.

2-tier Client/ Server
Application (fat client)

These are applications where the presentation

and business logic are grouped on the client

machine and a shared data source is accessed

over a network connection.

2-tier Client/ Server
Application (fat server)

These are applications where the presentation is

on the client machine and much of the code that

implements the business rules are tightly

integrated with the data access code, sometimes

in the form of database stored procedures and

triggers.

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Solution Reference Model

Page 45 of 141

Tier Type Definition

3-tier Client Server
Applications

These applications are partitioned into three

executable tiers of code: the presentation/user

interface which runs on the traditional desktop

client, the business rules which reside in the

business logic tier, and the business data

(including database object) which resides in a

data access tier.

Web-enabled
Application

These applications are usually partitioned into at

least 3 tiers: the user interface which is the

browser client, the business rules which reside

in the business tier, and the business data which

resides in the data access tier.

N-tier Application An N-tier application refers to an “at least” 3-tier

applications, be it a 3-tier client/server or web

application. These applications have distinct

separation for presentation (including support for

different client machines like browsers and

mobile browsers), business rules and data

access. N-tier applications typically have

distributed deployment with multiple physical

servers handling load balancing and high

availability.

Table SA-2: Tier Architecture

The advantages and limitations of each type of application tier are listed below

in Table SA-3. The considerations are based on the capabilities of the

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Solution Reference Model

Page 46 of 141

application types and it includes security, availability, scalability, maintainability

and performance.

Tier Advantages Disadvantages

One-tier or Monolithic

Application

 Very high performance

 Self-contained

 Easier to secure

 Easier to manage

 Potentially costly and

time consuming to

modify due to the nature

of the programming

language used.

 Difficult to share

services and data

 Little reuse of code

between monolithic

applications.

 Can be accessed using

only a single user

interface

2-tier Client/ Server

Application (fat client)

 Good performance as

application logic runs

within clients

 Fewer network traffic

 Difficult to deploy, as

every client needs to be

updated when changes

occur

 Business rules on the

client potentially expose

business rules to users,

resulting in

compromised

confidentiality

 Difficult to reuse

application logic as it

tends to bound tightly to

the presentation logic

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Solution Reference Model

Page 47 of 141

Tier Advantages Disadvantages

2-tier Client/ Server

Application (fat

server)

 Improved security is

possible by restricting

access only to the stored

procedure and denying

access to the data

 Reuse is improved by

enabling multiple

presentation

components to call the

same stored procedures

 Stored procedures or

triggers have limited

capabilities in handling

business logic.

 Stored procedures are

inherently more difficult

to maintain due to its

procedural nature.

 Long running stored

procedures tie up

database connections.

 Stored procedures are

tied to a particular

vendor, and cannot be

moved easily to a

different database

3-tier Client/ Server

Application

 Allows for greater reuse

of component.

 Easier to modify when

business rules change,

resulting in improved

maintainability.

 More flexible in terms of

scalability as the

workload increases

 Reusable components

are more complex to

design and develop.

 Performance may be

slower due to the data

transfer and method

invocations across

multiple tiers.

 Skills set requirements

are more complex

N-tier Application

(inclusive of Web

Application)

 Similar to 3-Tier Client/

Server Application

 Similar to 3-tier client-

server applications

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Solution Reference Model

Page 48 of 141

Tier Advantages Disadvantages

 Allow greater flexibility to

change and scale at

each layer

 Support different types

of user interfaces e.g.

Web Access Protocol

(WAP) for mobile

browser

Table SA-3: Comparisons of Application Tiers

Areas of consideration when selecting tier architecture for application

design:

(a) Number of Users

If the number of users accessing the application is large or cannot be

estimated, consider using 3-tier or N-tier application. This is because it

is easier to scale up the application with 3-tier or N-tier architecture.

(b) Network connectivity of the users

One-tier or two-tier usually require certain ports and settings on the

network. This is only feasible if the users are in the controlled

environment (for example, Intranet). If the users are on the Internet,

consider going for 3-tier web application instead.

(c) Cost and time for the new application

Generally, a 3-tier application will cost more and take more time to

develop.

(d) Ease of deployment

Applications utilising thin client (e.g. browser-based) are easier to deploy

as compared to application utilising 2-tier client/server.

(e) Requirements for application to share services and data

It is usually easier to share services and data using 3-tier or N-tier

architecture.

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Solution Reference Model

Page 49 of 141

Components of Distributed N-tier Applications

Figure SA-9 shows the components that should be taken into account during

application design for a distributed N-tier application.

(need to replace with new diagram)

Figure SA-9: Technology Components of an N-tier application

(a) Client Tier

The client provides a means for user to interact with the application. The

different types of clients are listed in the Table SA-4 below. These clients

differ in the way of access, deployment process and technology used.

P
re

se
n

ta
ti

o
n

B

u
si

n
e

ss

D
at

a
A

cc
e

ss

Client Tier

Web Tier

Application Tier

Browser
based
client

Rich
Internet

Client

Applicatio
n Client

Web
Service
Client

Integration Tier

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Solution Reference Model

Page 50 of 141

Client Type Description

Browser-based Client Static or dynamic pages displayed on the web

browser. Most widespread use in the industry.

Commonly known as thin client.

Rich Internet
Application (RIA)

RIA application offers a richer and more

responsive web interface (such as drag-and-

drop, animation, and video) as compared to the

browser-based client. The technologies include

binary downloads/plug-ins such as Applets and

ActiveX, or lightweight scripting framework such

as AJAX and Adobe Flex.

Application Client Graphical User Interface running in the client

machine. Usually created with Visual C/C++,

Visual Basic, and Java AWT/Swing. Able to

access business tier components directly. Good

for highly interactive usage. However, need to

update changes for every client station.

Table SA-4: Client Types

(b) Web Tier

The web tier enables the client tier to communicate and interact with the

application and integration tiers. It is responsible for managing content

selection based on application logic and session state. The web tier

could communicate with an application server or directly with the

integration tier.

Web tier codes such as ASP, JSP and servlets can be used for low-level

application functions such as:

(i) Simple business logic

(ii) Controller component that manages selection of view

(iii) Dynamically generating binary data such as images or new

content type.

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Solution Reference Model

Page 51 of 141

(c) Application Tier

This tier is mainly responsible for implementing the business rules for

the application. It is designed to provide a more scalable, fault tolerant

and highly available architecture. However, in some cases, the middle

tier may not implement the full business logic. It either works with or

delegates the business logic processing to one or more existing

systems.

(d) Integration Tier

This tier is responsible for providing data access to the enterprise

resources such as file systems, databases, directory service,

mainframe, Enterprise Resource Planning (ERP), or any other legacy

systems.

3.5.1.2 Design Pattern

Design pattern is a standard solution to a common problem. Instead of

designing and building a totally new solution to meet the application

requirements, design patterns can be adopted and customised to provide a fast,

reliable solution. Design patterns can be categorised as façade (i.e.

presentation), account access (i.e. account maintenance and logging in/out),

self-service (user interacting with the application typically as an e-service),

integration (such as application and data integration) and information

aggregation (i.e. aggregating information from various sources to be used for

analysis).

Areas of consideration in selecting design patterns are:

(i) Choose design patterns to solve the key business issues.

(ii) Design patterns should be product independent.

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Solution Reference Model

Page 52 of 141

3.5.1.3 Application Framework

A framework is a set of classes and interfaces that co-operate to solve a specific

type of software problem. It is these interconnections that provide the

architecture and design so that developers can free themselves from building

the infrastructure and concentrate on writing codes that extend the framework

behaviour to suit the business requirements. Examples of widely adopted

product-independent application frameworks are Struts and Spring.

A framework has the following characteristics:

(a) A framework is made up of multiple classes or components, each of which

may provide an abstraction of some particular concept. These

components and services are application-neutral, meaning they support

the needs of an application without making any assumptions about it

(b) The framework defines how components should work together based on

design patterns and best practices

(c) The framework provides an internal architecture that when leveraged, will

provide application reusability across the enterprise, not simply

component reusability.

Areas of consideration when evaluating an application framework:

(a) Soundness of the framework. Some of the factors to consider are:

(i) Extensibility of the framework. Generally the framework should

be flexible to accommodate additional requirements arising from

the application

(ii) Ease of maintenance

(b) Quality of code (if available) to access the cleanliness, efficiency and

correctness of the implementation

(c) Support by component developers to build in reuse components

(d) Quality of the documentation

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Solution Reference Model

Page 53 of 141

The documentation should be comprehensive and sufficient for one to

understand and utilise the framework.

(e) Product or project status e.g. vendor financial status, acceptance and

support in the developer community.

3.5.1.4 Service-Oriented Architecture (SOA)

SOA is a software architecture that builds a topology of interfaces, interface

implementations and interface calls. It is a relationship of service producers

and service consumers. SOA offers an evolutionary approach in enabling

distributing computing across the internet-connected enterprise. It has brought

about substantial impact in the areas of application design and development,

application integration and business process management. Government

agencies, in particular those with many applications, are to consider adopting

SOA.

Areas of consideration when designing an SOA service includes:

(a) Use meaningful service names

This will help the developers to identify the services and operations that

they need to use to implement the business processes. The names

should be meaningful in the domain of expertise of the service

consumer, favouring business concepts over technical concepts.

“ValidateID” is an example of a service that validates a given ID.

(b) Select a well-chosen granularity for services

By granularity, we are referring to the number of operations a service

should have. For example, let us assume that ProcessRegistration

service has a few operations such as ValidateID, ValidateRegistration,

CheckAvailability, RegisterRequest and AcceptPayment. The following

factors can be considered when designing services:

(i) Services should generally be the unit of testing and release

If granularity is too coarse (i.e. a large numbers of operations are

grouped together in a single service), then the number of

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Solution Reference Model

Page 54 of 141

consumers for the service tend to large. Hence if any amendment

to some aspect of a service is made, perhaps for the benefit of

only a subset of consumers, the whole service must be re-

released and hence potentially impact all consumers. In the

above example, it can be seen that ProcessRegistration is too

coarse; the services should be offered at one level lower i.e.

ValidateID, ValidateRegistration, etc.

(ii) Select service granularity with the service consumer in mind

One challenge for the service consumer is to find the correct

operations to use. Typically the consumer needs to browse a list

of services and, having identified a suitable service, the list of

service operations. In the extremes of service granularity - either

many services with few methods or few services with many tens

or hundreds of operations - will tend to impede consumability. The

above are examples of services with reasonable granularity

where each service has a few operations.

(c) Services should be cohesive and complete

The interfaces created should be functionally cohesive, i.e. a set of

operations that belong together because of their function. One way to

assess if an operation should be included is to look at the service from

the perspective of the service consumer. The naming convention of the

services and operations also help us to focus on the functional

cohesiveness of the interface, when we ask the question “Is the verb

something that the noun does?” For example, in ValidateRegistration

service, the registration is being validated as part of the overall

registration process

(d) Services should have stateless interfaces

For the services to be resusable, scalable and ready for deployment in

high availability infrastructures, the services should not be stateful, i.e.

there should not be any reliance on any long-lived relationship between

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Solution Reference Model

Page 55 of 141

consumer and provider nor an operation invocation implicitly relying on

previous invocation.

3.5.2 Application Development

Application development is required to produce applications that support the

business functions. While there is a growing trend in using Customised-Of-The-

Shelf (COTS) applications, the demand in the development of bespoken

applications and application reusable components continue to be very high.

3.5.2.1 Programming Languages

The choice of tier architecture (i.e. one-tier, 2-tier, 3-tier or N-tier) affects the

selection of programming language(s). The programming language(s) has to

support the tier architecture efficiently. In addition, the following are areas of

consideration when selecting programming languages:

(a) Widely adopted programming language

The programming language has to be widely adopted globablly to ensure

that it is reliable and has sufficient vendor support. A matured programming

language would have been improved over time for efficiency and removal

of programming bugs

(b) Market availability of programming skills and experiences

There should be sufficient availability in the market for programmers with

the right skills and experiences. This is one of the reasons that older

programming languages used in the mainframe environment have to be

migrated as the number of programmers with the appropriate skills and

experiences have declined significantly.

3.5.2.2 Coding Standards

There is no design consideration for this component. However, refer to Best

Practices for related information.

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Solution Reference Model

Page 56 of 141

3.5.2.3 Error Handling Standards

There is no design consideration for this component. A good application

framework, as described above, can aid the reusability of error handling

standards. A set of standard error handling codes can be defined and invoked

depending on the error type. Please refer to Best Practices for related

information.

3.5.3 Application Testing

Application testing is necessary to ensure applications performed to

expectations. Typically, testing would be carried out at the end of a logical

completion of task or phase such as unit test, module test and user acceptance

test (UAT). There are also different methods of testing such as white-box test

versus black-box test, and manual test versus automated test. The relevant

type and method of testing is dependent on the nature of the application.

Instead of describing these test types and test methods, design consideration

focuses on the approaches to testing.

Areas of consideration for application testing:

(a) Customise a testing methodology

Regardless if the government agency has in-house application

development team or outsourced its application development, it has to

customise a testing methodology depending on the nature of its

applications. A testing methodology would define the testing type, and

testing method required for the government agency

(b) Carry out static testing before dynamic testing

Static test focuses testing the form and structure of the applications while

dynamic test looks at the application behaviour. Static testing helps in

the early detection of defects which are often cheaper to remove than

those detected during dynamic testing. Examples of static testing are

document reviews, desk checking, functional test and unit test.

Examples of dynamic testing are load and stress tests

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Solution Reference Model

Page 57 of 141

(c) Use of automated testing tools

If the tests are going to be run repeated several times, considering using

automated testing tools where possible. Even though automated testing

tools may require some developmental effort, the testing cycle is much

shorter as compared to manual testing

(d) Carry out load / stress testing where possible

Load or stress testing will provide an accurate estimate on the number

of concurrent users supported and help to rectify any performance

bottleneck prior to implementation. Load / Stress testing is

recommended for public-facing applications (i.e. accessible by public

from the Internet) and large, complex applications

(e) Carry out security testing

If the application is public-facing, consider performing security testing

prior to going live. This provides opportunities for the development team

to avoid any kind of exploitation by hacking.

3.5.4 Application Deployment

Application deployment, often overlooked as an unimportant activity, ensures

the application success when implemented in the live environment. There are

many activities needed to transfer the application from test to live environment.

Areas of consideration when deploying applications:

(a) Directory structure

Consider creating a web application directory structure which identifies

the various types of files that would be used by the application and

therefore the corresponding rights on the web server

(b) Version tracking

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Solution Reference Model

Page 58 of 141

Versioning guidelines should be defined and used so that it is easier to

manage the various version of the application in the production, staging,

QA/test and development environment

(c) Deployment checklist

Create a standard deployment checklist to ensure that the basic

activities are carried out completely and in the right sequence. Where

possible, have a reviewer to ensure that the deployment activities are

checked according to the checklist.

3.5.5 Application Configuration Management

There is currently no architecture design consideration.

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Solution Reference Model

Page 59 of 141

3.6 Standards Classification

Each technical standard in the different domains is identified with a

classification. Table SA-5 describes the definition of these two standards

classifications.

 Standards

Classification

IT Systems

Mandatory*

This is the minimum

technology standard that

is mandatory for existing,

enhancements and new

IT Systems.

Government agencies

shall migrate to this

mandatory classification.

Recommended for

Enhancements and New

IT Systems*

This is the technology

standard

that supplements the

Mandatory standard. This

standard is applicable to

enhancements to existing

IT Systems and all new IT

Systems. It is advisable

for the government

agencies to adopt this

standard where possible.

Existing IT Systems  

Enhancements to

existing IT Systems
 

New IT Systems  

* Government agencies are to seek ITA advice for exemptions.

Table SA-5: Standards Classification

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Solution Reference Model

Page 60 of 141

3.7 Technical Standards and General Standards

Please refer to Appendix SA-1 for the list of technical and general standards.

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 61 of 141

3.8 Best Practices

3.8.1 Development Methodology

Best practices for development methodology include:

(a) Adopt a development methodology

Depending on the application requirements and complexity, the waterfall

or iterative or a combination of the two methodologies can be used to

design and develop the application. Some of the best practices are:

(i) Establish a standard methodology for the government agency

The use of a standard methodology would ensure a consistent

application development practices. Government agencies can use

either the waterfall, iterative, or combine and customise the two

methodologies for agency specific use. The standard methodology

can be used for both in-house and outsourced application

development.

(ii) Define clear deliverables

A good development methodology would define clear deliverables

at each stage or phase. Examples of clear deliverables include

approved project plan, documented & signed user requirements

specifications, approved application architecture & design,

approved test & implementation plans, approved user acceptance

test & system test reports, and reviewed application

documentation.

(b) Technique for use case modelling

The following are some techniques for better Unified Modelling

Language (UML) use case models:

(i) Write from the point of view of the actor and in the active voice

Use cases should be written in the active voice instead of the

passive voice. In addition, each use case should be written from

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 62 of 141

the point of view of the actor. After all, the purpose of the use cases

is to understand how your users will work with your system.

(ii) Write scenario text, not functional requirements

The use case should describe a series of actions that provide value

to an actor and not a collection of features. For example, an “Enrol

in Seminar” use case will describe how an employee interacts with

the system to sign up for a seminar. It should not describe what the

user interface looks like, or how it works. This important information

should be described in the user interface model. Object oriented

analysis is complex, which is why there are several models to work

with, and we should apply each model appropriately.

(iii) Create a use case template

Use cases include a fair amount of information that should be

documented for ease of references. Agencies should consider

developing their own templates for the documentation. A sample is

as follows:

Name The name should implicitly express the user’s
intent or purpose of the use case.

Identifier [optional] A unique identifier that can be used in other
project artefacts to refer to the use case.

Description Summary of the use case.

Actors The list of actors associated with the use case.
Although this information is contained in the
use case itself, it helps to increase the
understanding of the use case when the
diagram is unavailable.

Status [optional] An indication of the status of the use case,
typically one of work in progress, ready for
review, passed review or failed review.

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 63 of 141

Frequency How often this use case is invoked by the
actor. This is often a free-form answer such as
once per each user login or once per month.

Preconditions A list of the conditions, if any that must be met
before a use case may be invoked.

Post conditions A list of the conditions, if any that will be true
after the use case finishes successfully.

Extended use case
[optional]

The use case that this use case extends (if
any).

Included use case
[optional]

A list of the use case this use case includes.

Assumptions [optional] Any important assumptions about the domain
that has been made when writing the use
case. At some point, these assumptions
should be verified and evolved either into
decisions or into parts of the basic course or
alternate courses of actions.

Basic course of action The main path of logic an actor follows through
a use case. Often referred to as the happy path
or the main path because it describes how the
use case works when everything works as it
normally should.

Alternate courses of
action

The infrequently used paths of logic in a use
case, paths that are the result of an alternate
way to work, an exception, or an error
condition.

Change History [optional] Details about when the use case was
modified, why and by whom.

Issues [optional] A list of issues, if any that is related to the
development of this use case.

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 64 of 141

Decisions A list of critical decisions pertaining to the
content of the use case. It is important to
record these decisions to maintain a “group
memory”.

Table SA-6: Use Case Template

(iv) Organise the use case diagrams consistently for ease of readings

The common practice is to draw inheritance and extend

associations vertically, with the inheriting/extending use case

drawn below the parent/base use case. Similarly, include

associations that are typically drawn horizontally. These are simple

rules of thumb which, when followed consistently, result in

diagrams that are easier to read.

(v) Document use cases to aid the development of a user manual

The purpose of a user manual is to describe how a user can work

with the system. Since each use case describes a series of actions

taken by actors using the system, the same information can be

used to develop the user manual.

(vi) Use case versus steps within a use case

After developing the use cases, use case developers should review

and consider if the use case adequately represents the key goal of

the application from the user’s perspective. Quite often use cases

defined with names like “Validate customer number” is more of a

step in a use case rather than a use case itself. In this example, the

use case is likely to be “Sales Order” while the step within this use

case is “Validate customer number”.

(c) Guidelines for documenting use case models

For clarity, the use case model should be documented using the

following guidelines. Other than making the model easier to understand

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 65 of 141

and maintain, the models will improve communication internally within

the team and externally with partners and customers, thereby reducing

the chance of costly misunderstandings.

All diagrams comprise three basic elements: bubbles, lines and labels.

As a result, a common set of documentation guidelines applies to most

diagrams:

(i) Avoid crossing lines. Two crossed lines on a diagram can easily

be misread. If we cannot avoid crossing lines, draw one so that it

"hops over" the other to make their difference explicit

(ii) Avoid diagonal or curved lines. Straight lines, drawn either

vertically or horizontally, are easier to follow visually. Placing

bubbles on diagrams as if they are centred on a graph's grid point

(a built-in feature of many software-based modelling tools) makes

it easier to connect the bubbles with only horizontal and vertical

lines

(iii) Draw bubbles of consistent size. The larger a bubble appears,

the more important it seems to be. Unless you want that effect,

make the bubbles of uniform size. With some modelling tools,

however, bubbles may resize automatically based on their

contents, so this may be beyond our control

(iv) Include white space. White space is the empty area between

modelling elements on our diagrams. When bubbles crowd one

another, it can be difficult to distinguish which labels go with which

bubbles and lines, decreasing the diagram’s readability

(v) Organise diagrams from left to right, top to bottom. If there is a

starting point for reading a diagram, such as the initial state of a

state machine diagram or the beginning of the flow of logic on a

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 66 of 141

sequence diagram, place it towards the top left corner of the

diagram and continue from there

(vi) Show only what you have to. Diagrams that have too many

details are difficult to read because they are too dense. Include

only critical information on the diagrams and not include anything

extraneous

(vii) Keep your diagrams small. It is often better to have several

diagrams showing various degrees of details than one complex

diagram that reveals everything. A good rule of thumb is that a

diagram should have five to nine bubbles, because there is a limit

on the amount of information that we can deal with at once.

Set and follow naming conventions. This ensures consistency within our

models and hence increases their readability. Diagrams should use

consistent and recognisable domain terminology. This is particularly

true for domain-oriented diagrams that our project stakeholders are likely

to be involved with.

3.8.2 Application Design

Best practices for application design include:

(a) Government agencies should have an application framework for in-

house development as the framework could:

(i) provide a controlled environment for developing applications and

interfacing with other systems, hence ensuring quality of work

(ii) abstract the complexities of the infrastructure away from the logic

of the application. Hence enable developers to focus on

implementing business logic. This can lead to larger productivity

gains and a more maintainable application

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 67 of 141

(b) Government agencies should also specify that outsource application

vendors to use a framework to build applications. It ensures quality

applications that are structured and easier to maintain.

(c) Adopt N-tier architectures and design principles for distributed

applications

While mainframe and traditional 2-tier client/server system still have their

important role in serving the business needs of the various agencies, N-

tier architectures and application design principles should be adopted for

distributed applications. This will help to enforce logical separation of

functionality, such as keeping the data, business logic and presentation

layers separate from each other. At the same time, the application is

able to scale and change at each layer with minimum impact on the other

layers as requirements and technology change, thus providing improved

scalability, manageability, and resource utilisation. In addition, existing

non N-tier applications may be able to participate in distributed

architectures through the use of suitable middleware technologies in the

integration tier. Application design should consider exposing

functionalities as reusable services. This will enhance interoperability

and reduce inter-dependency with external systems.

The table provides a guide for making decision on the application tier.

The factors may not cover all areas of consideration as every project is

unique in nature and there is no one size fit all solution. However, given

the factors below, one is able to quickly make some initial assessment

and decision on the tier for the intended project.

Decision Factor for Tier Approach 1-
Tier

2-
Tier

3-
Tier

N-
Tier

Number of Users

Small (> 1 and < 20) * * *

Medium (>20 and < 99) * * *

Lager (> 100) * *

Domain

Intranet * * * *

Internet * *

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 68 of 141

Decision Factor for Tier Approach 1-
Tier

2-
Tier

3-
Tier

N-
Tier

Processing Requirements - utilisation of the CPU resource to perform business
logic and validation.

Low * * * *

High * *

Security - logging mechanisms, monitoring devices, as well as Appropriate
Authentication, ensuring that the device and system is always secure.

Low * * *

High * *

Performance - capability of a system to provide a certain response time.

Low * * * *

High * *

Vertical / Horizontal Scaling - characteristic of a system to increase performance
by adding additional resources. Vertical: add more hardware resources to the
same machine, generally by adding more processors and memory. Horizontal:
add more machines to improve performance.

Vertical * * *

Horizontal * *

Web Based Application Required?

No * *

Yes * *

Any integration with External system or centralised Services?

No * *

Yes * *

Availability of System - ensures a certain degree of operational continuity

Low * * * *

High * *

Need to support multiple User Interface?

No * * * *

Yes *

Need for instant availability of application updates across the entire
organization?

No * * * *

Yes *

Need for rich communication such as connectionless messaging, queued
delivery, publish-and-subscribe, and broadcast.

No * * * *

Yes * *

Table SA-7: Guide to Application Tier

(d) Base design decision on what works now, not a promise of functionality

in the future. This is especially true for J2EE applications, where

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 69 of 141

specifications are released before production-quality implementations.

Also vendors’ implementations may vary. Hence specified features may

not always prove to work in the real world.

(e) Have experienced architects or designers involved in the design

process, especially when implementing an enterprise application. These

experts can help to mentor less experienced developers in the process,

hence building a deeper reserve of expertise.

(f) The application design should take into account usability. There is a

common look for the Oman eGovernment Services Portal. Government

agencies should attempt to follow the common look and feel standard

for all application user interfaces (refer to TRM Service Access Domain

for specific guidelines).

3.8.3 Application Development

Best practices for application development include:

(a) Adopt a coding standard for naming convention, code documenting

convention, programming convention and code formatting convention,

All these conventions will make the code more readable across

development teams, improve the quality, performance and efficiency of

the codes.

(b) Adopt an error logging standard to aid in determining the cause of an

error in code. Some programming languages provide standard

mechanisms for implementing error logs such as Java Exception

handling which the development team can leverage on. Errors should be

classified into severity levels such as "warning," "input error," and "fatal

error", to facilitate developer’s response. There are application

frameworks that allow error logging standards to be defined and

implemented (refer to Section 2.7.2 Application Design).

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 70 of 141

(c) Write effective error messages

Error messages should describe the problem in plain simple terms as

users do not have the same level of technical knowledge to be able to

interpret messages written in technical terms. The message should be

worded to help the user to understand the problem and provide

information on what the user can do to moving ahead. The developer

should build in flexibility to allow modifications of error messages without

changes in the source code. Some of the points to note are:

(i) Do not use exclamation point either in the error message or as

an icon

(ii) Do not display the error messages in capital letters

(iii) Do not use the word 'Error' as it has strong negative

connotations

(iv) Phrase the message as a question that can be answered with a

simple 'Yes' or 'No' to reduce ambiguity.

(d) Document the source code

A simple, commented program will have a comment for every other line

of code that needs explaining. Code documentation is beneficial to

developers - it segregates portions of the code, makes it more readable

as well as easier for further modifications. Well-documented code is

maintainable and allows anyone to continue working on the same piece

of program after a period of time. The Java programming language has

a feature that allows HTML API documentation to be directly generated

from code documentation. The Visual .Net IDE from Microsoft also has

this feature for all the .Net languages.

(e) Program Header

From the program header, the developer gets a quick overview on what

the program is supposed to do. It is important the developer who may be

debugging the code to be in the right mindset so that he or she can

understand why the program was coded in a certain way. The

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 71 of 141

description should be short, yet detailed. After the description comes the

name of the creator and then the date. Some Version Control software

may also be incorporated to update the program version number in the

program header.

After that there may be an optional section for notes - any oddities that

may have thrown in at the last minute or any incomplete areas of the

program (e.g. to-do list). Other things to include may be the names of

the dependencies programs. Note that sensitive information about the

program should not be listed in the header such as database id and

password.

(f) Method/Function Header

The method/function (depending on whether you are using object-

oriented or procedural languages) header lets the reader know exactly

what the method/function does, and why it does it. There is a brief

description, and a variable list. The variables section describes what

each variable is supposed to do or represent. Like in the program

header, an optional notes section, may describe any exceptional

qualities that the method/function may encounter.

(g) Refrain from over commenting

The next step is to go through the code and add in additional comments

to explain certain areas in more detail. The purpose of comments is to

make code easier to read. However, if there are too many unnecessary

comments and if these comments are not placed correctly, it will have a

negative effect by making the code harder to read because you can’t tell

the difference between the code and the comments.

(h) Descriptive Variable Names

There is a way to decrease the developer’s commenting workload - using

descriptive variable names. Variable names should be short and yet self-

explanatory.

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 72 of 141

The same rule applies to any type of name – method/function, structure,

class, etc. As long as the variable name can describe what it is supposed

to do, developers do not have to describe it themselves.

3.8.4 Application Testing

Best practices for application testing include:

(a) Use automated test tools

Manual testing can be quite overwhelming. The use of automated test

tools can reduce testing effort. If test data cases have been catalogued

and preserved, test effort will be minimised since less time will be spent

on re-creating such test cases. Automated tools require effort to prepare

the test scripts and the assumption that a script can be re-use may not

be always true. Selection of the appropriate tool is important as each tool

has its own strength/merits.

With the trend towards outsourcing, ability to ensure code quality has

become a challenge. With newer generation of test tools which has the

capability of analysing code complexity and maintainability, it is possible

to determine potential code quality issue. It is advisable for project team

to require their software developer to make use of such tools for

conducting periodic review as evidence of quality assurance.

With multi-tier application, server and network environments, problem

and performance troubleshooting to ensure the Service Level

Agreement (SLA) of applications is becoming increasingly tricky. To

address this, there is an increasing need to consider application specific

performance monitoring and tuning tools. These tools may be used

during pre-production for application assurance or could be deployed

into production for performance management and diagnostics.

(b) Performance Usability Testing

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 73 of 141

For Web-based application solutions, investment should be made in

usability testing to ensure delivered products are user-friendly. Usability

testing also reduces overall development costs by enhancing

requirements understanding and catching problems early in the

development cycle.

Before conducting a usability testing, factors to consider include:

(i) Determine the user profile/target audience;

(ii) Preparing multiple scenarios or design so as to ensure sufficient

user feedback;

(iii) Be prepared for all potential feedback including those, which

may be inappropriate, controversial and culturally unacceptable.

The basic elements of a usability test are quite simple and involve three

participants: facilitator, observer, and user. Prior to running a test, the

facilitator should perform a dry run of the test to ensure the scenarios

and equipment is ready. During a test, the observer records the events

while the test facilitator introduces the tasks to the user. The goal is for

the user to complete a set of tasks in a set amount of time. This will

enable the test to produce results proving cost/time savings. Usability

testing should also include rapid prototyping sessions in which users and

developers work together. Usability testers may refer to ISO / IEC for

recommended standard method for reporting usability test findings.

In addition to pre-production usability testing, it is also important to

continually monitor and gather feedback from users after

implementation. Other than using surveys, click-logs and traffic logs that

track functional popularity, there are also an emerging start-up market

offering tools or services will track the user’s actual click locations and

actions. These offerings in addition to tracking functional popularity, also

generates click density maps that help webmasters evaluate if they are

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 74 of 141

successfully directing their user’s attention areas and usage

preferences.

(c) Application Security Testing

Security review, penetration testing, tools and basic testing practices can

assist in uncovering known vulnerabilities that are typically found in the

Web application. In order to ensure complete application security, it is

recommended that the following application security testing covers

areas such as authentication, authorisation, information leakage, field

variable, session time-out and log-out, cache control, server side

application logic and client-side software vulnerabilities. For security

related information, please refer to Oman National Computer

Emergency Readiness Team.

(d) Interoperability Testing

Other than the usual unit, functional, regression and load testing, web

service development has promoted an area of testing that is important

but often subsumed under other integration requirements –

Interoperability testing.

To ensure better integration of systems through Web Services, it is

recommended that interoperability testing is carried out using Web

Services Interoperability (WS-I) Basic Profile. WS-I Testing Tools are

available and are designed to help developers determine whether their

Web services are conformant with the WS-I profile guidelines.

Table SA-8 summarised a recommended set of minimum testing to be

performed by the various application types.

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 75 of 141

 Type of Application \
Recommended Type of Testing

C
li
e
n

t
/
S

e
rv

e
r

A
p

p
li
c
a
ti

o
n

W
e
b

-e
n

a
b

le
d

A
p

p
li
c
a
ti

o
n

In
te

rf
a
c
e
 &

 I
n

te
g

ra
ti

o
n

C
o

m
p

o
n

e
n

t

Manual Functionality Testing * *
Automated Functionality Testing *
Automated Regression Testing *
Automated Load Testing *
Automated Performance Testing * * *
Usability Testing * *
Security Testing *
Interoperability Testing *

Table SA-8: Minimum Testing by Application Types

3.8.5 Application Configuration Management

Best practices for application configuration management include:

(a) Based on configuration management best practices (ANSI/EIA-649),

four principles were identified for an effective configuration

management. The four principles are:

(i) Configuration Identification – basis from which the configuration

of products are defined. The configuration documentation defines

the performance, functional and physical attributes of the

application and system infrastructure.

(ii) Configuration Control – changes to the application are

accomplished using a systematic and measurable change

process. Changes to the configurable items are controlled and

coordinated after approval is given after the change control

process.

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 76 of 141

(iii) Configuration Accounting – track each version of release and

record all changes made to previous baseline to reach new

baseline.

(iv) Configuration Verification – ensure new baseline has all planned

and approved changes incorporated, and would be done before

product release.

(b) Establish a Change Control Board to review, control, and approve all

changes in a software application.

(c) Develop an overall Configuration Management Plan (CM Plan). The CM

Plan will describes the policy, responsibilities, schedules and procedures

for a uniform adoption and implementation methods for the projects. The

procedures of the CM Plan (e.g. approval process, tracking of changes,

etc.) should be documented in a separate document for better

maintainability and audience focus.

3.9 Obsolete Technologies

Government agencies have to ensure that they do not have any obsolete

technologies in this domain. Please ensure compliance by referring to OeGAF

Obsolete Technologies Compliance List.

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 77 of 141

4. Service Access Domain

4.1 Intent

The Service Access Domain defines the technology categories, technology

components and associated standards for access channels that allow users to

interact with the requested applications and for the applications to communicate

responses to the users. It highlights key architecture design considerations and

recommends best practices for service access implementation.

4.2 Domain Design Principles

When designing a service access solution, the following design principles

should be observed:

Principle 1: Leverage on the Internet and Intranet

The Internet and Intranet, as an information and service delivery medium, will

be the first technology option considered for implementing new applications and

performing a rewrite or significant maintenance on legacy application. By

leveraging on the Internet and Intranet, it allows the user to access information

anytime or anywhere. It also provides a consistent presentation method,

reduces total cost of ownership and reduces cost of service delivery.

Principle 2: A Variety of Delivery Mechanisms and Interfaces to Deliver

Electronic Government Services to a Wide Range of Devices

The delivery mechanism includes electronic mail, multimedia web pages,

streaming audio or video, voice response units, and wireless transmissions.

The terminal devices include, but are not restricted to, voice telephones,

personal computers, cellular telephones, personal digital assistants, and

kiosks.

Principle 3: Design to Support Users with Limited Physical Abilities

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 78 of 141

Electronic government services must be ability independent and includes

delivery to users with limited physical abilities. This includes the ability to listen

to the subject content (in Arabic or English) where applicable.

Principle 4: Plan Service Access for High Availability

The service access must be planned with high availability and caters for round-

the-clock service availability because the users should be able to access the

services from any part of the world.

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 79 of 141

4.3 Technology Categories and Technology Components

Figure SA-10 shows the association between the technology categories,

technology components and its relevant standards.

(need to replace diagram above)

Figure SA-10: Mapping of Categories, Components and Standards for Service

Access Domain

Table SA-9 describes both the technology categories and technology

components of the Service Access Domain.

Technology Categories Technology Components

Web Application Platform Web Server

A Web Server, also known as an HTTP

Server, is a computer connected to a

TCP/IP based network that runs software

implementing the server side of the HTTP

protocol, thus allowing it to receive and

respond to HTTP requests from a browser.

The computer hardware, operating

system, and Web Server software, taken

together, constitute the Web Server.

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 80 of 141

Technology Categories Technology Components

Web Proxy Server

A Web Proxy Server is a server that acts

as an intermediary for requests from

clients seeking resources from other

servers.

The proxy server evaluates the request

according to its filtering rules.

Portal Server

A portal server allows an organisation to

unify its various web sites or portals

(customer portal, business

partner/supplier portal, employee portal,

etc.) into one single portal so as to

promote information sharing, collaboration

and interaction among its users by

presenting content in a focused and

personalised manner.

A portal server typically aggregates the

content of the various organisations’ web

sites and offers common content

manipulation services such as content

publishing, content sharing, content

search, personalisation, collaboration and

internationalisation/ localisation of content

to its users. It also typically comes with a

wide range of mechanism to facilitate

integration of the portal with the various

disparate content sources.

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 81 of 141

Technology Categories Technology Components

To an end user, a portal is a single point of

access to an organisation’s published

content and computing resources.

Application Server

An application server is a software

framework dedicated to the efficient

execution of procedures for supporting the

construction of applications. The term was

created in the context of web applications.

In these, the application server acts as a

set of components accessible to the

software developer through an application

programming interface (API) defined by

the platform itself.

Integration Server

Integration Servers provide integration

services for distributed transaction across

disparate application systems. It also

includes distributed system middleware

features like message queue and

Transaction Processing (TP) monitor.

Database Server

A database server is a computer program

that provides database services to other

computer programs or computers, as

defined by the client-server model. The

term may also refer to a computer

dedicated to running such a program.

Database management systems

http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Client-server
http://en.wikipedia.org/wiki/Software_modeling
http://en.wikipedia.org/wiki/Database_management_system

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 82 of 141

Technology Categories Technology Components

frequently provide database server

functionality, and some DBMS rely

exclusively on the client-server model for

database access. Such a server is

accessed either through a "front end"

running on the user’s computer which

displays requested data or the back end

which runs on the server and handles

tasks such as data analysis and storage.

Directory Service

A directory service is the software system

that stores, organises and provides

access to information in a directory. It

allows the look up of values given a name.

Search Engine

A search engine is a software program that

searches for sites based on the words that

are designated as search terms. Search

engines look through the databases of

information in order to find what it is that

you are looking for.

Integration Broker

An integration broker enables applications

to exchange information in dissimilar

forms by handling the processing required

for the information to arrive in the right

place and in the correct format.

Transaction Processing Monitors

http://en.wikipedia.org/wiki/Database_management_system

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 83 of 141

Technology Categories Technology Components

Transaction Processing (TP) Monitors

manage transactions both within and

across systems. They handle

housekeeping tasks such as rollback and

resource co-ordination.

Internet and Intranet Access

This refers to the technology that

enables platform independent, intra and

inter-agency business communications

as well as communications with

external business partners and

customers.

Browser

This is a common front-end component for

retrieving, presenting and traversing

information resources on the World Wide

Web. There are now a number of widely

used browsers.

Mobile Browser (also known as Micro

Browser and Mini Browser)

This is a type of browser designed to be

used on the small screens of many

different types of mobile devices. It is

commonly used on mobile phones that

require a gateway to translate Web pages,

news feeds and other Internet content.

Access Protocols

This refers to all Internet/Intranet access

enabling protocols and methods that fall

into the realm of process-to-process

communications via an Internet Protocol

(IP) network.

Telephony

This refers to technology components

that facilitate seamless transmission of

information between applications and

users via telephony related

communication channels.

Interactive Voice Response (IVR)

IVR is an interactive technology that can

recognise voice and keypad inputs from

phone systems. In addition, it can respond

to inputs via pre-recorded voice messages

or dynamically generated audio.

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 84 of 141

Technology Categories Technology Components

Facsimile (Fax)

A fax is a digitised image of text and/or

pictures, represented as a series of dots

(bit map). Faxes can be sent and received

through telecommunication channels.

Collaboration Management Electronic Mail (Email)

Email is a method of exchanging digital

messages. E-mail systems are based on a

store-and-forward model in which email

computer server systems accept, forward,

deliver and store messages on behalf of

users, who only need to connect to the

email infrastructure, typically an email

server, with a network-enabled device

(e.g. a personal computer) for the duration

of message submission or retrieval.

Instant Messaging (IM)

Instant messaging (IM) is a form of real-

time communication between two or more

people based on typed text. The text is

conveyed via devices connected over a

network such as the Internet.

Short Message Service (SMS)

SMS is a communication service

standardized in the mobile communication

system, using standardised

communications protocols allowing the

interchange of short text messages

between mobile telephone devices.

http://en.wikipedia.org/wiki/Real-time_computing
http://en.wikipedia.org/wiki/Real-time_computing
http://en.wikipedia.org/wiki/People
http://en.wikipedia.org/wiki/Written_language
http://en.wikipedia.org/wiki/Internet

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 85 of 141

Technology Categories Technology Components

Collaboration Workspace

A collaborative workspace or shared

workspace is an inter-connected

environment in which all the participants in

dispersed locations can access and

interact with each other just as inside a

single entity.

The environment may be supported by

electronic communications and groupware

which enable participants to overcome

space and time differentials. These are

typically enabled by a shared meta model,

common information, and a shared

understanding by all of the participants

regardless of physical location.

Video Conferencing

This is a set of interactive

telecommunication technologies which

allow two or more locations to interact via

two-way video and audio transmissions

simultaneously.

Enterprise Content Management (ECM)

ECM refers to the technologies, tools, and

methods used to capture, manage, store,

preserve, and deliver content across an

enterprise. At the most basic level, ECM

tools and strategies allow the

management of an organisation's

http://en.wikipedia.org/wiki/Electronic_communications
http://en.wikipedia.org/wiki/Groupware

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 86 of 141

Technology Categories Technology Components

unstructured information, wherever that

information exists.

Table SA-9: Service Access Technology Categories and Components

4.4 Architecture Design Considerations

4.4.1 Web Application Platform

The design of the web application platform has to primarily support the tier

architecture (i.e. 1-tier, 2-tier, 3-tier or N-tier application type).

4.4.1.1 Web Server

The function of the web server is to receive and reply to client request over the

Internet / Intranet, typically via HTTP.

Areas of consideration when selecting web server:

(a) Support for open standards.

The web server should support open standards such as HTTP, HTTPS

and TCP/IP. It should preferably be supported by the various common

operating systems.

(b) Performance of web servers.

Web servers should incorporate features for scalable performance such

as load-balancing, clustering and failover.

4.4.1.2 Web Proxy Server

The function of the web proxy server is to alleviate the load on the content

servers and the Internet.

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 87 of 141

Areas of consideration when selecting proxy server:

(a) Purpose of proxy server

Consider the purpose of the proxy servers and hence the types of proxy

server. A description of some of the server types are listed as follows:

(i) Forward Proxy Servers

These proxy servers are located at the edge of the Internet

Service Provider’s (or enterprise’s) network and retrieves web

requests on behalf of the users. This saves excessive Internet

traffic for pages that are commonly accessed.

(ii) Reverse Proxies

The servers are placed at the service provider’s data centre and

will attempt to serve the content to the users requesting for it, so

that the origin servers are not bombarded by requests.

(iii) Transparent Proxy Cache

Transparent proxy cache is similar to a forward proxy server. It

transparently serves its users without the users having to specify

the usage of a proxy server. The traffic is automatically diverted

to the transparent proxy, usually via a Layer 4 switch.

(b) Performance of proxy servers.

If performance is required for rapid lookup (especially in a clustered

configurations), consider hardware-based proxy rather than software-

based proxy server instead.

(c) Cost of proxy server.

Consider software-based proxy server if cost is a concern.

4.4.1.3 Portal Server

The function of the portal server is to unify the web servers as the main access

point to the application. It receives all requests from the clients and sends them

for processing. Upon receiving the processed information, the portal server

returns the results back to the clients. A portal server aids information sharing

and allows the customisation of the information presented to clients.

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 88 of 141

Areas of consideration when selecting portal server:

(a) Support for open standards

Portal framework should support open standards for connectivity and

compatibility e.g. provide support for Light-weight Data Access Protocol

(LDAP) and common protocols for information exchange built on XML.

(b) Integration with other applications

The portal servers should support seamless integration with other

essential enterprise applications. Actual integration requirements for a

portal server would vary depending on agency’s requirements. The

following provides some considerations for a portal product’s integration

functions:

(i) Availability of portal adaptors to connect to directory servers,

databases, file systems, business intelligence tools, content and

document management systems, groupware and office

productivity tools (e.g. e-mail, word processing documents,

spreadsheets) or applications (front-office, back-office and e-

business systems). Note that it is not the number of adaptors

provided that matter, but the degree of integration provided by the

adaptor

(ii) Availability of support for out of the box portlet integration with

common systems, such as Enterprise Resource Planning (ERP),

databases, etc

(iii) Availability and ease of integration with best-of-breed technology

components from other vendors (especially those not included in

the basic portal offering). As far as possible, the use of a standard

based approach to integration (e.g. J2EE Connector Architecture,

XML Web Services, XML) is preferred rather than the proprietary

method of connecting to backend systems.

(c) Availability of Open APIs

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 89 of 141

Portal servers should include open APIs (or portal development kits) to

allow for the integration of external application systems (e.g. agency’s

own proprietary applications) that may not be able to integrate with the

portal out of the box. Portal should also support various programming

and technology interfaces as needed to access the functions to be

integrated into the portal (e.g. EJB, COM+, CORBA/IIOP, message

queuing, Java, C++, etc).

(d) Administration tools

Portal servers should have sufficiently rich administration tools to

support the efficient maintenance of a portal. The following should be

included: remote administration, graphical user interface (GUI)

administration tools and delegated administration facilities.

(e) Performance

Portal servers should incorporate features for ensuring robust and

scalable performance such as load-balancing, clustering, fault-

tolerance, failover, connection pooling, caching and other performance

and scalability features. While portal servers that are designed to run on

an application server normally inherit the application server’s capabilities

in these areas, standalone portal solutions must implement such

services as part of their products to be considered robust and scalable

solutions.

(f) Delivery channels support

Availability of support for a broad range of delivery channels (PDAs,

mobile phones, interactive digital TVs).

(g) Out-of-the-box functionalities

Ability to provide basic out-of-the-box functionalities such as templates,

workflows and service desk.

(h) Portlets reusability

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 90 of 141

Ability to reuse portlets developed by a particular portal product across

agencies.

4.4.1.4 Application Server

Application server provides services and components for easy rapid

development and deployment of enterprise application systems. Application

Servers can be categorised as follows:

(a) Standard Application Servers

 Support the features provided by Web Servers e.g. Java Server Pages

(JSP), Active Server Pages (ASP) or HTML pages. In addition, they may

support technology components such as Enterprise Java Beans (EJB),

J2EE Connector Architecture (JCA), and Java Messaging Service

(JMS).

(b) Enterprise Application Servers

Support the features provided by Application Servers and includes

clustering solutions (e.g. failover capabilities, replication and load

balancing). These servers are intended for production use at an

enterprise level. Descriptions of these clustering solutions are provided

in the following Table SA-10:

Component/Services Description

Load Balancing Ability to allocate resources for tasks to

achieve best response time based on load

factor

Failover Automatically reconnects all clients to a

backup machine

Security Provides Authentication, Authorisation and

Audit Trail

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 91 of 141

Component/Services Description

Administration Monitoring, application configuration, and

user/application administration

Container API J2EE container or equivalent implementation

Metadata management Contains configuration information on logical

and physical resources, application rules,

security information, etc. in a

directory/database

Table SA-10: Enterprise Application Servers Clustering Solution

Generally, when upgrading from an Application Server to an Enterprise

Application Server (of the same product), sharing the same codes is possible

and practical. The application will run as it is, without modifications, by

replacing the server license. However, for the application to leverage on the

clustering solutions provided by the Enterprise Application Server,

modifications to the application are required.

Areas of consideration when selecting application server:

(a) Review application needs

The government agency must carefully analyse the current and future

applications’ needs before selecting an application server to ensure that

the selected product can support additional functionalities that will be

needed in the near future, and the investment in developing and

deploying the application server is protected.

(b) Application server version

Most application servers have different versions like standard and

enterprise as mentioned above. Select a version that meets the

application requirement.

(c) Product certification

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 92 of 141

The application server should preferably be certified by the product

vendor.

Microsoft .NET versus J2EE Application Server

Two major application servers are Microsoft .Net and J2EE. Table SA-11

documents the key differentiators between them. Government agency can

refer to this table when considering which application server to adopt for an

application.

Key
Differentiators

Microsoft .NET J2EE

Portability The .NET core works on

Windows only though

theoretically it supports

development in many languages

(once sub-/supersets of these

languages have been defined

and Intermediate Language (IL)

compilers have been created for

them). Its SOAP capabilities will

allow components on other

platforms to exchange data

messages with .NET

components. While a few of the

elements in .NET, such as SOAP

and its discovery and lookup

protocols, are provided as public

specifications, the core

components of the framework, IL

runtime environment, ASP+

internals, Win Forms and Web

Forms component "contracts",

etc. are kept by Microsoft, and

J2EE works on any platform

with a compliant Java VM and

a compliant set of required

platform services (e.g. EJB

container, JMS services). All

of the specifications that define

the J2EE platform are

published and reviewed

publicly, and numerous

vendors offer compliant

products and development

environments. But J2EE is a

single-language platform.

Calls from/to objects in other

languages are possible

through CORBA, but CORBA

support is not a ubiquitous part

of the platform.

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 93 of 141

Key
Differentiators

Microsoft .NET J2EE

Microsoft will be the only

provider of complete .NET

development and runtime

environments. There has already

been some pressure by the

development community for

Microsoft to open up these

specifications, but this would be

counter to Microsoft's standard

practices.

Language

Support

.NET is language independent

and can use any language once

a mapping exists from that

language to IL. Several third-

party vendors have produced

language compilers that target

the Common Language Runtime

(CLR); examples include

NetCOBOL from Fujitsu, and

Visual Perl and Visual Python

from ActiveState. Because all

.NET languages share a

common type system (CTS),

developers can safely pass

types written in one language to

code written in another. They

can also use the unified

Framework Class Libraries in

any .NET language, saving them

from having to learn how to work

Tied to Java. To use another

language, interface

technology like Java Native

Interface (JNI) or Web

Services will need to be used.

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 94 of 141

Key
Differentiators

Microsoft .NET J2EE

with many different

implementations.

Tools Support Microsoft's Visual Studio .NET

provides a robust IDE for

building .NET applications which

include Windows applications,

Web applications, or XML Web

services. From a developer's

viewpoint, applications are built

using a single IDE though

different .NET languages can be

chosen. The Visual Studio .NET

Server Explorer allows

developers to access server

resources (e.g. message

queues, performance counters,

data sources) without leaving

Visual Studio .NET.

Java features a host of tools,

which provides the developer

with choices, though it may

present difficulty in choosing

the right tool for a given job.

More generally, debugging

support is good via the Java

Platform Debugging

Architecture (JPDA), and the

arrival of Ant and JUnit have

given the Java community a

standard build tool and unit

testing framework,

respectively. There are a

number of freeware and

shareware available for Java

IDE.

User

Authentication

and

Authorisation

.NET suffers from tight

integration with IIS, without

which it is not really capable of

performing authentication. In

terms of access control, it does

provide a convenient mechanism

that meshes nicely with its Code

Access Security (CAS) features.

Java, in addition to the

standard authentication types,

offers the powerful Java

Authentication and

Authorization Service (JAAS)

mechanism as its primary

vehicle for adding

authentication and Principal-

based authorisation to Java

applications, which adds a lot

of flexibility to design choices.

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 95 of 141

Key
Differentiators

Microsoft .NET J2EE

Security

Features

Microsoft products have done

best in the closed, homogeneous

environment of all-Windows

networks. This type of

environment allows for system

integration and utilisation of

.NET security features to their

fullest potential.

Java performs well in

heterogeneous environments.

In the case of a mixed

environment, Java's platform-

independent security features

may be more useful than those

of .NET.

Table SA-11: Comparison of .NET and J2EE Application Servers

4.4.1.5 Integration Server

There is no design consideration for this component.

4.4.1.6 Database Server

There is no design consideration for this component. Refer to IRM for design

considerations.

4.4.1.7 Directory Service

A directory is an information source used to store information about objects

such as users, applications, and network resources, in an hierarchical tree

format that can be set up to represent an organisation chart.

Areas of consideration for using directory service (versus database):

(a) Frequency of read/search versus updates

Directory service is optimised for read access. Hence they should be

used when reads/searches occur more often than updates (for example

telephone directory). If there is frequent need to update to store dynamic

information, database server should be used instead.

(b) Access Need

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 96 of 141

If there is a need to read data for information or authentication, then,

consider using directory service instead of database server.

4.4.1.8 Search Engine

A search engine enables a user to find information based on his/her own search

criteria, rather than using predefined paths. It is used to quickly find out where

information is located. It presents a common interface to all sources of

information on Web servers. It can be offered either as a service (e.g. Yahoo or

Google) or as a product, either hardware-based or software-based. Figure SA-

11 illustrates the components that make up a universal search engine.

An enterprise search engine is capable of searching against multiple content

repositories and databases, as well as providing advanced search features

such as concept-based search, content categorisation and personalisation.

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 97 of 141

Figure SA-11: Universal Search Engine

Areas of consideration when selecting a search engine:

(a) Supported features

Some of the features to consider when selecting a search engine are:

(a) Results sorted by relevance

(b) Natural language queries (especially in Arabic)

(c) Search operators for greater control

(d) Secondary searches within the current results

(e) Search similar documents feature

(f) Metadata keywords search feature

(g) Metadata descriptions feature

(h) Search both structured and unstructured data feature.

 U
se

r
In

te
rf

ac
e

Presen
tation

Templ
ate

B
ea

Cont
ent

New
s

Ac
ti Ja

va
C+
+

Recomm
endation

Rules
Engine

Person
lisatio

Result
Engine

Index
Engine

Backe
nd

Integra
tion

Con
tent

Search

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 98 of 141

(b) Support for customisation to map any meta-tag into any searchable

attribute.

4.4.1.9 Integration Broker

There is no design consideration for this component.

4.4.1.10 Transaction Processing Monitors

There is no design consideration for this component.

4.4.2 Internet and Intranet Access

Internet and Intranet is commonly used to access information and e-services.

Areas of consideration when implementing Internet and Intranet Access:

(a) Support Different Client Devices

Access to information and eServices has to be designed to be delivered

through browser in different client devices, in particular for the modern

mobile devices.

(b) Use ‘Push’ Delivery Mechanism

‘Push’ or deliver information (e.g. news, alerts and reminders) to user

without user requesting for it.

(c) Adopt A Consistent Presentation Design

User access via Internet website, Intranet or mobile applications have to

be over a consistent interface that provides the clear identity of the

government agency with standard navigation paths.

4.4.3 Telephony Access

While Internet access is pervasive, telephony access continues to be important

as it gives an alternative access to information and e-services.

Areas of consideration for implementing Telephony Access:

(a) Enhance service access through IVR System, SMS and Fax

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 99 of 141

(b) Provide Call Centre Services.

4.4.4 Collaboration Management

4.4.4.1 Electronic Mail

There is no design consideration for this component.

4.4.4.2 Instant Messaging

There is no design consideration for this component.

4.4.4.3 Short Message Service

There is no design consideration for this component.

4.4.4.4 Collaboration Workspace

There is no design consideration for this component.

4.4.4.5 Video Conferencing

Please refer to TRM Platform Domain for details.

4.4.4.6 Enterprise Content Management (ECM)

According to Association for Information and Image Management (AIIM)

International, the five components of ECM model are capture, manage, store,

preserve and deliver. Under the manage category, the application areas are:

(a) Document management

(b) Collaboration

(c) Web content management, including web portals

(d) Record management

(e) Workflow/business process management.

As most of the application areas have been covered in this document, the focus

will be on Document Management for this section.

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 100 of 141

Document management (DM) software provides a set of services for organizing

electronic documents; managing content; enabling secure access to

documents and unstructured data; routing documents and automating related

tasks; and facilitating document distribution.

Areas of consideration when selecting DM software:

(a) Customisable Metadata

Metadata are the pieces of information that are captured together with a

document into the Document Management System (DMS). As each

agency may have different requirements for classifying their documents,

it is important for the Document Management System to be flexible in

allowing different Metadata to be captured. (Refer to Data Management

Domain in IRM for best practices on Metadata).

(b) Access Control

Different DM products provide different ways of managing access

control. The control can be by user and what he is permitted to do as

well as by folders and documents. Agencies should examine the access

control mechanism provided by the DM to assess if these fit their

requirements.

(c) Versioning

Versioning is an essential feature of DM software. It provides a history

of changes and allows incorrect change to be backed-out quickly.

Different products offer different degree of control for versioning; some

even allow versioning to be turned off, which is undesirable. In addition,

the number of versions (e.g., 0-99) and sub-versions (e.g., 99.99)

allowed varies from one product to another. This feature should be

examined to ensure that the product meet your agency’s requirements.

(d) Integration with email platform and office productivity software

Integration with the following:

(i) Filing of emails into DMS

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 101 of 141

(ii) Users to receive document tasks (such as reviews) via the same

inbox as the email platform. A link to the document should be

provided in the email rather than using the attachment feature

(iii) Filing of documents into the DMS through the office productivity

software.

(e) Integration with Directory Service for user information

It is important to look for Document Management products that are

capable of obtaining user information from a directory using LDAP

protocol. If your organisation already has an enterprise directory, you

should capitalise on this to reduce the additional efforts of creating

another user information directory and having to maintain it.

(f) Compliance with legal regulations

If there is a requirement for documents kept in a Document Management

to comply with any regulations (such as Royal Decrees and any

government regulations), then there is a need to obtain certification from

an authorised certification authority.

Lastly, AIIM has published a document entitled “Implementation Guidelines and

Standards Associated with Web-based Document Management Technologies”.

This document contains a number of guidelines, which may be useful to

agencies implementing Document Management systems.

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 102 of 141

4.5 Technical Standards and General Standards

Please refer to Appendix SA-2 for the technical and general standards on

Service Access Domain.

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 103 of 141

4.6 Best Practices

When implementing service access solutions, observe the following best

practices:

(a) Standardise web browsers used in all agencies to minimise maintenance

effort

(b) Constantly check and apply latest versions of patches to web browsers

in agencies

(c) Ensure applications and e-services compatibility by avoiding the use of

client-side technologies which are dependent on browser type and

browser version.

4.6.1 Web Application Platform

4.6.1.1 Application Server

Best practices for application servers include:

(a) The administration service for the application server should not be

started unless it is needed or it should be configured so that its access

should be restricted to selected secure subnet.

(b) Enable services that are only required by the application server.

(c) Use clustering for load balancing and fail-over to increase reliability and

performance.

(d) There may be performance issue if the application server is shielded

from other components (e.g. Web Server or the database) by firewall.

Where required, the firewall and other network devices should be tuned

to compensate for the additional delay in transiting across components.

(e) As the number of threads affects the application server’s performance,

avoid the use of single thread model as this result in creation of an

instance for each user and will overload the server very quickly.

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 104 of 141

(f) As data persistence technologies have become more mature, use

Container-Managed Persistence (CMP) entity beans so that the

persistence layer can take care of the database operations. This

provides the benefit of developing entity beans that are more

independent of the database. Use Bean-Managed-Persistence (BMP)

entity beans only if CMP does not meet requirements. Similarly, use

ADO.NET Entity Framework as it uses conceptual data model rather

than physical relational data structures.

(g) Tune the connection pools for the application server, transaction

parameters (like transaction serialisable), the server Operating System

(OS) network parameters (like queue length, timeout, etc.) accordingly

to the volume and characteristics of the application.

(h) For J2EE Application servers, tuning of the JVM is very important and

will affect the performance of the application. Proper tuning of memory

sizing, garbage collection settings etc. should be done with relation to

application characteristics and design.

(i) The best practices for designing transactions in application server are:

i. Transactions should start from with the receipt of a user request and

end with the return status of the request. It should not span user-

thinking time at the screen/input device

ii. To optimise performance, the database transactions should be

started and stopped at the application server level in the EJB

container

iii. Transactions should be declarative and container managed to

minimise the writing of codes to a transaction management service

API. It will also reduce chances of errors and allow ease of changes

to the transaction behaviour without substantial coding change

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 105 of 141

iv. If the business logic or rules are not sensitive, these can be located

in the application server to improve performance and

responsiveness

v. Do not manage transactions in client applications unless there are

compelling reasons to do so. This is because client applications are

subjected to interruptions or unexpected terminations and if you start

and stop a transaction at the client level, you will risk consuming

network resources while waiting for user actions, interruptions,

resumption of client activity or timeout. You will also risk consuming

process and network resources to roll back the transaction after

timeout or termination of the transaction

vi. Watch out for potential deadlock for transactions involving database

access/update

vii. If necessary, tune the database parameters like changing to row

level locking, lock escalations values, frequency of deadlock

scanning, lock timeout values, enable pessimistic locking, etc.

viii. Transaction monitor parameters like database connection pooling

should be set according to application requirement.

4.6.1.2 Integration Server

The best practices for integration server include:

(a) Leverage on existing application server as integration server

Extend an existing application server into an integration server if there is

an available application server that can be incrementally extended to

meet the new requirement. The cost of extension and its available future

growth potential must be evaluated against the cost of the new

integration suite.

(b) Common schema for data interchange

A common schema for data interchange should be used when

integrating systems across agencies. XML schemas (XSD) should be

preferred over XML DTD (data type definitions) to define the data

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 106 of 141

interchange format because of its better extensibility, support for data

types and namespaces. Please refer to IRM for data exchange

standards and code tables.

(c) Use of XML Web Services

XML Web Services should be deployed as an alternative light-weight

integration strategy instead of using it to substitute existing Enterprise

Application Integration (EAI) solutions completely. This is because

existing XML Web Services standards and products are still lacking in

terms of transaction support and reliability, which are already quite

established in traditional EAI solutions. Agencies should consider XML

Web Services as one of their integration strategies with external

agencies, or private sector organisations. This is less costly and reduces

integration effort compared to traditional EAI implementations.

4.6.1.3 Database Server

There are a number of best practices described in IRM. In addition, the following

are best practice for database servers:

(a) Independent Software Vendor (ISV) support

As more and more organisations buy off-the-shelf applications rather

than develop in-house, the support of existing DBMS platform become a

critical selection criterion for choosing the applications. Hence,

organisation employing a ‘buy’ strategy for application should choose a

DBMS that has wider ISV support.

(b) Cluster technologies for mission critical system

DBMS that support cluster technologies is recommended for mission

critical systems that require high availability. Cluster technologies

support failover capability: The automatic transfer of workload from one

processor to another should there be an OS and hardware failure. In

order to implement clustering for DBMS, the network and OS must be

able to support it.

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 107 of 141

(c) Distributed Transaction Processing

DBMS that supports XA is recommended for system that requires

distributed transaction processing (DTP). The XA is an X/Open

specification for distributed transaction processing (DTP). It describes

the interface between the global transaction manager and the resource

manager (typically a DBMS). The XA Specification describes what a

resource manager must do to support transactional access. Resource

managers that follow this specification are said to be XA compliant.

4.6.1.4 Directory Server

The best practices for directory service include:

(a) Applications and operating systems should be directory-enabled

Applications that are directory-enabled can obtain an expanded set of

user information from the directory service as appropriate. This will also

help to modularise the user management functionality in applications.

(b) Make use of the directory service for authentication and authorisation

The directory is well suited to provide information on the level of security

necessary. This facilitates user authentication and authorisation by

making the resources available to the users, when the appropriate rights

are in place.

(c) Synchronisation of multiple directories

In a typical environment where there are multiple directories deployed,

the directories should be synchronised in order to improve data accuracy

and integrity and eliminate duplicate, ghost and dormant accounts. Note

that it may not be possible to synchronise the multiple user passwords

in situations where the passwords are encrypted.

4.6.1.5 Transaction Processing Monitor

Transaction processing monitors are typically used in environments with a very

high volume of transactions. A transaction monitor helps to manage these high

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 108 of 141

volume transactions and allows the systems to be more scalable. As a best

practice, the direct use of TP Monitors is not encouraged. It should be used as

part of an application server service. Figure SA-12 shows a recommended

architecture for TP monitor as part of the application server service:-

T
ra

n
s
a

c
ti
o

n
 P

ro
c
e

s
s
 M

o
n

it
o

rApplication

Business Logic

Application

Business Logic

R
e

s
o

u
rc

e

M
a

n
a

g
e

r

R
e

s
o

u
rc

e

M
a

n
a

g
e

r

R
e

s
o

u
rc

e

M
a

n
a

g
e

r

Application Server with

Transaction Process

MonitorBusiness

Transaction

Business

Transaction

Database Server

Database Server

Database Server

Figure SA-12: Transaction Process Monitor

4.6.2 Collaboration Management

4.6.2.1 Email

The best practices for email are:

(a) Single email infrastructure within an agency

Agencies should adopt a single email infrastructure to minimise

integration and deployment complexity.

(b) Email servers, relays, gateways and filters should be dedicated

All unnecessary services should be removed from the server.

Customised applications should not be executed on the server. Instead

they should reside on a separate dedicated applications server.

(c) Rights to execute agents/scripts

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 109 of 141

As the poorly written agent/scripts could potentially bring down the mail

server, execution of agents/scripts should be controlled and be available

to only a limited group of users. The administrator should keep track of

the list of users that are running agents/scripts on the mail server. The

users should only execute thoroughly tested agents/scripts.

(d) Modems connected to the mail server

The mail server should not allow direct dial-in access. Remote users

should instead dial into and be authenticated through the dedicated

remote access servers (RAS).

(e) Inter-government mail routing

Inter-government mails should be routed within the Oman Government

network. Only unclassified mails can be routed via Internet.

(f) Reduce mail database size

As the mail database file grows larger, the probability of mail database

corruption increases. Hence, it is advisable to keep the mail database

files small. This can be achieved through:

(i) Configure server to cap mail database size

(ii) Regular database compaction

(iii) Educate user on email archival.

(g) Limit Internet mail size and network bandwidth

The Internet bandwidth is usually shared for both email and web access.

Dedicating a minimum and maximum Internet bandwidth for email traffic

will help ensure that the emails continue to flow during web surfing peak

hours. Large Internet emails consume Internet bandwidth and will likely

bring down the mail filters and gateways. It is recommended to cap the

mail size for incoming Internet mail. The size should be based on the

agency’s needs and the capacity of the mail filters and gateways.

(h) Stop open-relaying for Internet SMTP relays

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 110 of 141

To prevent spammers from misusing the Internet SMTP relays, sites

should close off their SMTP relays to all but the predefined internal mail

hosts.

(i) Filter Internet spam mails

Unsolicited commercial emails, or spam mails can be minimized by

denying SMTP connection that originate from servers listed in publicly

available DNS blacklists and reputation databases. These blacklists and

reputation databases keep records of Internet SMTP hosts that are

known sources of spam or those that permit third party open relaying.

(j) Perform virus scan and mail attachment filter

E-mails from Internet should be virus scanned and malicious codes

should be removed. Email attachments that are popular means of

carrying malicious codes (such as executable and macros) should be

filtered. These detection tools should be constantly updated to detect

new virus and file signatures.

(k) Keep up with security patches

Administrators should be kept updated on security issues for those

related to the mail server, gateway, relays and their operating systems.

They should subscribe to the vendor’s security alert list or monitor their

web site regularly for patches, test and apply them immediately.

(l) Monitor logs

System logs should be monitored regularly for any suspicious activity.

Logs should be set as read-only, backed up regularly and should be

archived for at least two years.

4.6.2.2 Instant Messaging (IM)

As there are still no unified standards for IM, agencies should seek alignment

with the Messaging/Email Infrastructure for maximum interoperability with other

agencies.

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 111 of 141

4.6.2.3 eParticipation

Introduce eParticipation through social media, online surveys, discussion

forums and blogs.

4.6.2.4 Collaboration Workspace

The best practices for collaboration workspace are:

(a) Leverage on existing messaging infrastructure

Agencies should use existing solutions available for their messaging

infrastructure (refer to Email, Instant Messaging and SMS) to implement

collaboration workspaces. This will reduce the complexity in integration

between the workspace solution and messaging.

(b) Dedicated server

Similar to email server, all unnecessary services should be removed

from the server. The mail service should not be executed on the same

server as the collaboration workspace server.

(c) Perform virus scan on documents

The server should perform virus scan on all documents prior to saving

them to the server.

4.6.2.5 Video Conferencing

Best practices for video conferencing are:

(a) Interoperability testing

If products from different vendors are to be used together, it is

recommended that a test be conducted to ensure complete

interoperability, even if the vendor state compliance with the standards

listed above.

(b) Bandwidth provisioning

Typical video conferencing session consumes about 256Kbps to 1 Mbps

of bandwidth. Provide for such bandwidth prior to the video conferencing

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 112 of 141

session. Make sure also that the corporate firewall setting allows such a

connection to take place.

(c) Audio setup

Voice is actually more important than video in a videoconference

session. Plan for full duplex (bi-directional) audio and the best

microphones and speakers that can fit into the budget. Do also sure that

echo and noise cancellation is a feature in the audio system.

4.7 Obsolete Technologies

Government agencies have to ensure that they do not have any obsolete

technologies in this domain. Please ensure compliance by referring to OeGAF

Obsolete Technologies Compliance List.

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 113 of 141

5. Service Integration Domain

5.1 Intent

The Service Integration Domain defines the various service integration

technology categories, technology components and associated standards. It

highlights the key architecture design considerations and recommends best

practices for implementing service integration solutions.

5.2 Domain Design Principles

When designing a service integration solution, the following design principles

should be observed:

Principle 1: Enable the Inter-operability of Multiple Technologies

Integration provides a bridge between the heterogeneous operational

applications and platforms. An effective architecture ties together the mix of

platforms, operating systems, transports, and applications.

Principle 2: Leveraging on Existing Technologies and Investment While

Integrating Different Application Systems

Service Integration has to take into account the need to use existing

workstations, peripherals and existing transports to access existing and new

applications. The idea is to leverage on existing investments to connect the

various operational application systems and data.

Principle 3: Use Existing Integration Solutions Whenever Possible

Instead of building a new integration technique from scratch, use an existing

solution that answers the specific integration needs of an application system.

Principle 4: Reuse Common Services to Ensure Efficient Integration and

Reduce Development Time

Provide access to common services (such as accessing frequently-used data

and access control to data / applications) that can be reused and shared, thus

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 114 of 141

reducing development costs. Reduce the resources spent on developing and

maintaining "islands of applications" which include redundant code. Application

developers can focus on new work rather than re-work.

Principle 5: Minimise the Impact to Existing Application Systems

As much as possible, the integration solution should enable new applications

to use existing resources with minimal disruption to existing applications. Where

possible, use non-invasive techniques for integration.

Principle 6: Use Standard, Matured and Widely Adopted Technologies

Across Applications Whenever Possible

Use standard, matured and widely adopted integration technologies. Limit the

heterogeneity of the technology used in order to simplify integration and enable

migration to future technologies.

Principle 7: Provide Maximum Flexibility to Integrate Heterogeneous

Systems

Implement standards-based service integration technologies that provide

maximum flexibility for both existing and future needs.

5.3 Technology Categories and Components

Figure SA-15 shows the association between the technology categories,

technology components and its relevant standards.

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 115 of 141

(need to replace diagram)

Figure SA-13: Mapping of Categories, Components and Standards for Service

Integration Domain

Table SA-12 describes both the technology categories and technology

components of the Service Integration Domain.

Technology Categories Technology Components

Business Process Management

(BPM)

A Business Process (BP) is a collection

of related, structured activities that

provides a service that meets the needs

of a client.

BPM is a technology category which

comprises enabling components for

automation of BP.

Process Engine

The Process Engine is the run-time

platform for executing process-based

applications including business rules.

Commonly used runtime languages are

Business Process Execution Language

(BPEL) and XML Process Definition

Language (XPDL).

Business Process Modeller

This is the design time platform for

designing and simulating Business

Processes.

The commonly used design-time notation

is Business Process Modelling Notation

(BPMN).

Business Activity Monitoring (BAM)

This is the business analytics tools which

are designed specifically to analyse

business processes, enabling managers

to identify business issues, trends and

opportunities with reports and dashboards

and react accordingly.

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 116 of 141

Technology Categories Technology Components

File Transfer Middleware

This refers to the components used to

transfer data files over the network.

File transfer can be carried out between

two servers, and also between a client

and a server.

Client File Transfer

This component initiates the connection,

requesting to either receive or send

required data.

Server File Transfer

This component contains either the data

file to be deposited or the data file to be

extracted. It also manages the access

rights to the data repository.

Web Services

Web Services are defined as self-

contained, self-describing, loosely

coupled software components that can

be published, discovered, and invoked

over a network.

Service Registry

Like a directory, the Service Registry lists

all the available Web Services that can be

consumed. It allows a Web Service to be

published, searched and invoked.

Web Service Description Language

(WSDL)

The WSDL is a language that allows the

Web Service Provider to describe the

functions of the service. It also allows the

Web Service Consumer to understand the

service, and how and when to invoke it.

Web Service Channel

Web Service channel is the

communication method between the Web

Service Provider and Web Service

Consumer. Being platform independent,

the messages are constructed using XML

documents which contain metadata and its

corresponding contents. The runtime

binding establishes a dynamic relationship

between the Web Service Consumer and

Web Service Provider, creating a self-

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 117 of 141

Technology Categories Technology Components

contained service that maintains its own

state (be it stateful or stateless).

Web Service Security

Web Service Security is a set of

mechanisms to implement secured Web

Services. It describes the various ways to

ensure the confidentiality and integrity of

Web Services.

Message-Oriented Middleware

(MOM)

This is an infrastructure that transfers

messages over the network. Data is

enveloped into messages so that they

are platform independent.

Message Server

Message Server is a middleware that

handles messages sent for use by other

applications / programs, using a

messaging Application Program Interface

(API).

A Message Server typically houses the

message queues, and manages the

transactions between a message sender,

message queues, and the message

consumers.

Message Queue

Message Queue provides the data

transmission method between application

systems. Messages are deposited and

received through Message Queues. This

technology provides transparent,

interoperable and robust message

exchange.

Message Sender and Consumer

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 118 of 141

Technology Categories Technology Components

Message Sender is a program that sends

information to another program via the

Message Server.

A Message Sender program uses the

messaging API, creates a connection to

the Message Server and writes the

message to the Message Queue.

A Message Consumer program waits for

messages in a Message Queue. When a

message arrives, the consumer program

processes the message and commits the

transaction.

Transaction Management

This technology allows efficient

processing of transactions across various

heterogeneous systems. Messages are

coordinated and sent to respective

distributed systems for processing. The

Transaction Manager ensures data

integrity and the completion of

transactions.

Message Routing

It provides location transparency for the

message processing. Based on the

message header (including message

priority), messages can be routed to

improve the efficiency processing of data

and transactions. Message Routing is

based on pre-defined rules and

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 119 of 141

Technology Categories Technology Components

algorithms. It is useful for subscription-

based and high priority messaging.

Message Transformation

This technology provides the ability to

transform from one protocol to another

which is important for interoperability. The

MOM can receive a message in one

protocol and transform into another before

sending it out.

Adaptor

This software bridges the differences

among various application software

technologies and protocols. It is a

simple solution that usually ‘eliminates’

the gaps between legacy and new

application technologies.

Application Adaptor

This software allows connectivity among

customised product-based application

products. Customised Off-the-Shelf

(COTS) applications may require specific

application adaptors so that the data and

application functions can be integrated

with other applications.

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 120 of 141

Technology Categories Technology Components

Technology Adaptor

This software typically bridges the

differences between legacy applications

and new technologies. Mainframe

application adaptor to access a Web

Service is an example.

Integration Management

Integration Management software

provides monitoring and governance

capabilities for integration solutions.

Web Service Management (WSM)

In particular for Web Services, a WSM

would provide the following functionalities:

(a) Lifecycle Management – for the

provisioning, versioning and

terminating of the Web Service

(b) Quality of Service (QoS) – monitors

and measures the availability and

performance of published Web

Services

(c) Operations Management –

monitors, alerts and provides audit

logs on the Web Services

execution. Only with proper

operations management can Web

Services be implemented and

maintained effectively.

Application Integration

Application Interface

This involves the invocation of specific

business functions of a specific API or pre-

determined protocols. This allows the

reuse of the functionality. The use of

distributed objects or components is also

included.

Workflow

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 121 of 141

Technology Categories Technology Components

Workflow software is a vehicle for

automating business processes and

tracking their status. It enables work to be

assigned, routed, approved, acted upon,

and managed electronically through

system-controlled rules.

Data Integration

Data integration is the process of sharing

or merging data from two or more distinct

software applications. It includes the

following means:

(a) Data sharing via direct database

connection or database replication

(b) Data transfers via batch file

transfers

Message-Oriented Integration

Messaging is an event-driven

communications layer that allows

applications to transfer information

securely and reliably. It enables reliable

communication between heterogeneous

applications and supports asynchronous

communication. Reliable transmission of

message is assured.

Service-Oriented Integration

Service-oriented integration rides on top of

the traditional application interfaces and

message-oriented integration to hide the

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 122 of 141

Technology Categories Technology Components

complexity and abstract out the interfaces

in order to enable a more flexible, platform

independent and robust integration

environment.

Process-Oriented Integration

The integration approaches used are

becoming more aware of its role in the

large scheme of a business activity or

business process. Process-oriented

integration is in recognition of the

convergence of business process with

traditional integration models.

Directory Services

A directory is an information source

used to store information about objects,

such as users, applications, and

network resources, in a hierarchical tree

format that can be set up to represent

an organisation chart.

A directory service refers to both the

information source (directory) and the

services making information available

to the users.

Directory Server

The actual information store that allows

clients to query the directory.

Directory Information Tree

(Namespace)

Organisational structure for all the entries.

Directory Entry

A directory entry is a collection of attributes

with a name, called a Distinguished Name

(DN). The DN refers to the entry

unambiguously.

Directory Schema

Information about how data is organised –

metadata such as object classes,

attributes, matching rules – and stored in

the directory schema.

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 123 of 141

Technology Categories Technology Components

Access Protocol

The protocol for clients to access

directory servers.

Table SA-12: Service Integration Technology Categories and Components

5.4 Architecture Design Considerations

5.4.1 Service Oriented Architecture (SOA)

Service Oriented Architecture (SOA) is an architectural style, design style and

design principle for application development and integration. It is intended to

achieve loose coupling among interacting applications or services.

These services interoperate based on a formal definition (or contract) which is

independent from the underlying platform and programming language. The

application software components become very reusable because they are

standards-compliant and are independent from the underlying implementation

of the service logic.

Areas of consideration when designing an SOA based solution:

(a) Leveraging on current technology investment

The solution should provide opportunity to consolidate similar application

functionalities leveraging on current technology investment as far as

possible (e.g. through the use of Web Service, adaptors and / or screen

scraping)

(b) Flexibility

The solution should structure ICT applications based on services in such

a way as to facilitate the rapid reconfiguration of business processes

(c) Agility

The solution should allow users to respond to changing business

requirements through quick deployment of new/enhanced applications.

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 124 of 141

Figure SA-14 below illustrates the reference architecture of a typical SOA

implementation today.

Figure SA-14: Overview of SOA Reference Architecture

5.4.2 Business Process Management (BPM)

BPM is a technology category which comprises enabling components for

automation of business process.

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 125 of 141

Areas of consideration when implementing BPM:

(a) Segregate deployment environments

Typically, there are four environments required during the course of BPM

implementation (i.e. Development, Test / QA, Staging and Production)

(i) Development: This is primarily used for developing BPM

solutions. All unit tests, bug fixes are done in Development

(ii) Test/QA: The environment is used primarily for deployment of

solutions for testing of features and overall functionality and user-

acceptance of solutions

(iii) Staging: This environment is a duplicate of the Production

environment, where all fixes are tested in an environment that is

identical to Production, before migration into Production

(iv) Production: This is the live environment where actual business

transactions take place.

(b) Decide on an architecture option that meets business requirement

There are four architectural designs for BPM implementation, namely:

(i) Single-tiered or Standalone: This option provides a single and

simple deployment for all the BPM components (BPM Engine,

Application Server, and Database Repository) on a single

machine. In addition, this option provides a simple administration,

less overhead, and limited transactional capabilities. This option

is for simple to moderate BPM deployments

(ii) 2-tiered: This option provides a two-tiered architecture

deployment where on the one hand, the BPM engine and the

Application Server are installed on one server and on the other

hand the database repository is installed on another server. This

usually happens when the ICT infrastructure already has some

database instances that can be leveraged. This is a mid-level

architecture option where there is slightly more overhead and

more transactional capabilities. This option is for moderate BPM

deployments

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 126 of 141

(iii) 3-tiered: This option provided dedicated services for all BPM

components. In addition, this option provides more complex

deployment and administration; there is much more overhead but

it is scalable

(iv) Multi-tiered: This is the most complex architecture where BPM

components are divided into multiple dedicated servers for large-

scale BPM deployments in an established ICT infrastructure that

includes clustering, load-balancing, and/or fail-over.

The selection of these options for each environment depends on different

factors such as existing ICT infrastructure, budget, and solutions to be

deployed. The most commonly implemented architecture option is the 3-tiered

architecture.

5.4.3 Enterprise Service Bus (ESB)

An ESB is a distributed service reference architecture, built based on open

standards, which delivers messaging middleware, intelligent routing and XML

transformation, in conjunction with a flexible security framework and a

management infrastructure for deploying and monitoring the services. An ESB

allows services - mainly data and application services - to be searched and

dynamically consumed. More importantly, an ESB provides a loosely coupling

implementation mechanism between applications, between data, and between

data and applications. By allowing transformation of messages in different

formats, a change in the application or data format would not require explicit

change in the applications that require the data or logic from the

application/data affected.

Areas of consideration when implementing ESB:

(a) Use ESB only for complex, enterprise integration requirements

(b) Implement both synchronous and asynchronous transport protocols and

service mapping (locating and binding) for flexibility

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 127 of 141

(c) Use different message routing features such as static / deterministic

routing, content-based routing, rules-based routing and policy based

routing

(d) Use logical partitioning and proper name space for message queues

(e) Use adaptors for integration with legacy or proprietary-based

applications. Adaptors can be broadly classified into technology

adaptors and application adaptors:

(i) Technology adaptors provide connectivity via standard transport

protocols (e.g. HTTP, FTP and SMTP)

(ii) Application adaptors provide connectivity to packaged software

by invoking their APIs directly

(f) Implement a security module to authorise, authenticate, and audit the

use of ESB which enforces non-repudiation and confidentiality. This

security module would be independent from the other applications

(g) Enforce assurance in delivery of messages.

5.4.4 Repository

A repository is the component in an SOA architecture used to manage design-

time and run-time artefacts and assets generated to support each service. This

includes functional specifications, message meta data, and service contracts

as shown in Figure SA-14.

Areas of consideration when implementing repository:

(a) Start with a simple repository when implementing any type of integration.

It is more important for the repository to provide the ability to track all

integration jobs, file transfers, Web Services or messages. The

repository can be in the form of an Excel spreadsheet

(b) Over time, as the volume of integration increases, consider implementing

a UDDI which is a set of specifications that describes how a registry

stores information about Web Services and how the registry can be

accessed

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 128 of 141

(c) Consider implementing Lightweight Directory Access Protocol (LDAP) as

an application protocol to query and modify directory data running over

TCPIP.

5.4.5 Integration Management

This component provides governance capability in an SOA. SOA governance

is a set of activities related to exercising control over services in an SOA. These

include managing of Quality of Service (QoS) policies of all service interfaces

within the SOA.

Areas of consideration when implementing Integration Management:

(a) Regardless of the integration methods (e.g. files transfer, Web Service,

message or adaptor), it is necessary to manage the integration execution.

As integration involves two parties, there must be a documented

agreement on the integration services.

Consider Service Level Agreement (SLA) for the core and important

integrations. Key information to be captured in the SLA includes Service

Owner, Service Availability and Service Access Rights.

(b) Use monitoring tools to check on basic message queue objects like

queue depth, connections and error queue, etc.

(c) For Web Services, implement Web Service Management (WSM) to

monitor and track Web Service performance.

5.4.6 Application Integration

In order to achieve a level of cohesiveness and interoperability, there is an

increasing need for applications to be integrated with other applications to share

data and processing. User requirements are inherently too complex and

dynamic for any single design team to provide the entire solution. Hence, it is

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 129 of 141

necessary to have integration strategies to achieve the integration of potentially

homogeneous and also multiple heterogeneous solutions.

An integration strategy is required for the development of large, complex

application. An integration strategy is also required when there a number of

interfaces to data and business processing (either within the government

agency or with other government agencies). An integration strategy may use

one or more interface tiers as shown in Table SA-13.

Interface Tiers Examples of Integration Methods

Data Integration

File transfer, data replication, etc.

Application Interface

Common Object Model (COM),

Common Object Request Broker

Architecture (CORBA), XML Web

Services, etc.

Message-Oriented Integration

Message queues

Service-Oriented Integration

Web Services

Process-Oriented Integration Business Process Management(BPM)

Table SA-13: Types of Interface Tiers

5.4.6.1 Data Integration

Data integration involves combining data residing in two or more distinct

software applications to create a more highly functional enterprise application.

Reference can be made to Information Reference Model (IRM) for data

integration details. This is typically achieved via the following means:

(a) Data sharing via direct database connection or database replication

(b) Data transfers via batch file transfers

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 130 of 141

Areas of consideration when selecting data integration methods:

(a) Network where the application resides

If the application is residing on another network, direct database

connection will typically not be possible. In such cases, consider using

file transfer middleware

(b) Data integrity and consistency

If data integrity and consistency is crucial, use less intrusive methods

(no direct data access to application) such as file transfer middleware

(c) Data Timeliness

If real time update is required, consider data access methods or protocol

such as Java Database Connectivity (JDBC) and Open Database

Connectivity (ODBC)

(d) Database product of the application

Database replication is usually product-specific. Hence, it is preferred

that both applications use the same database product if one wants to

use data replication.

A sample evaluation of the options and the different data integration methods

are shown in Table SA-14. Related information is also provided in Information

Reference Model (IRM).

Data
Integration

Method

Security Data Integrity and
Consistency

Data Timeliness

File Transfer

Middleware

Does not require

direct access to

database by other

applications (i.e. less

intrusive).

Each application will

need to handle the

integrity of the file

upload to the

database. Application

only needs to ensure

the integrity of the

application data is not

compromised during

Applicable for

applications that

do not require

real time update.

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 131 of 141

Data
Integration

Method

Security Data Integrity and
Consistency

Data Timeliness

upload from the flat

file.

Data Access

Methods &

Protocols

Opens up new

opportunities for data

corruption and

security breaches.

Direct access to

database increases

vulnerability to

potential mis-use.

Applications that

require direct access

to the database must

ensure all appropriate

integrity checks are in

place at the

application level.

For applications

that require real

time update.

Database

Replication

Can make use of

secured replication.

However, it is not

firewall friendly.

Synchronisation of

replication activities is

important to ensure

that it meets business

objectives.

Provides real

time or batch

updates.

Table SA-14: Data Integration Strategy

5.4.6.2 Workflow

There are three major types of workflow products:

(a) Embedded Workflow

Embedded workflow comes as part of a business application package

(such as ERP or CRM) and is embedded within the business application

– this embedded workflow generally only addresses the needs of the

particular business application and does not extend its reach further.

Besides business application packages, embedded workflow are

provided as part of other software like Document Management software

and Web Content Management software.

(b) Independent Workflow

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 132 of 141

Independent workflow software comes from third-party workflow vendors

that supply standalone software packages designed to complement and

coexists with an organisation’s existing IT infrastructure. The software

generally comes equipped with good design tools, and may offer add-on

EAI-type functionality. It typically involves repetitive processes

(processes that obey a standard set of rules and policies that are applied

to every work item). The product is built to be endlessly definable,

adjustable and fluid. The design methodology is top-down, driven by a

mapped business process and drilled down to specific sets of rules.

(c) Infrastructure Based Workflow

Such software provides a layer of functionality on top of an infrastructure

system, such as messaging infrastructure and application server.

Areas of consideration when selecting workflow software:

(a) Routing mechanisms

The routing mechanisms can be sequential, parallel or rule-based. As

not all workflow software is capable of supporting all of these routing

mechanisms, it is important to select one that will meet application-

specific requirements

(b) Task notification

It is important to ensure that the workflow software can integrate with

your email platform so that the task notifications can be received via the

same inbox as the email platform

(c) Integration with directory service for user information

The workflow should be able to integrate with directory service for user

information

(d) Workflow definition tools

It is crucial that the workflow software should provide tools to ease the

design and maintenance of the workflow instructions

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 133 of 141

(e) Development support

If customisation is required, agency should evaluate the toolkits provided

by the vendors

(f) Integration to BPMS

Business Process Management (BPM) is a change management and

system implementation methodology to aid the continuous

comprehension and management of business processes that interact

with people and systems both within and across organisations. A BPM

System (BPMS) is the technology solution component of BPM approach

to change management and system implementation and workflow

software is one of the essential components of a BPMS. It is therefore

essential to consider the integration to BPMS if the overall need is for

BPM.

5.4.6.3 Application Interface

In this method, the sharing of data is achieved by invocation of specific business

functions via specific Application Programming Interface (API) or pre-

determined protocols. The APIs have to be developed by the respective

applications and made available to the rest of the applications. Such APIs may

include the use of distributed objects or components.

Areas of consideration when implementing application interface:

(a) Platform of the application

If the applications are developed in Java, consider using JNI (Java

Native Interface). It is simple to use and is faster than other approaches

(b) Portability of API

If the API needs to be portable and language neutral, consider using

CORBA (Common Objects Request Broker Architecture).

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 134 of 141

5.4.6.4 Message-Oriented Integration

Messages are an excellent form of integrating or exchanging event-driven data.

There is no design consideration for this component.

5.4.6.5 Service-Oriented Integration

Please refer to TRM Service Integration Domain, Section 5.6.1 for design

considerations.

5.4.6.6 Process-Oriented Integration

Please refer to Section 4.5.2 above for design considerations.

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 135 of 141

5.5 Technical Standards and General Standards

Please refer to Appendix SA-3 for the technical and general standards of

Service Integration Domain.

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 136 of 141

5.6 Best Practices

5.6.1 File Transfer Middleware

(a) Large number of small or medium sized files should be packed into a

single file for better performance, especially over slow network

(b) Use ASCII mode of transfer for text files

(c) Use Binary mode of transfer for non-text file (e.g. executable files)

(d) Open the FTP ports at the firewall only upon request for connecting to

external FTP servers

(e) Ensure only authorised users have access to the right FTP directory

(f) FTP servers should be in DMZ

(g) Maintain regular housekeeping of files on the FTP servers.

5.6.2 MOM

(a) Use MOM only when integrating many application systems especially

when involving legacy system

(b) When selecting a MOM solution, focus on performance, ease-of-use,

and types of protocol supported for network and security.

(c) Avoid using bulk delivery mode for delivery of messages. The large

amount of data in bulk delivery can potentially clog up the MOM

infrastructure and degrade performance.

5.6.3 Integration Management

(a) Explore the feasibility of extending existing application servers into an

integration server

(b) Use a common schema to enable effective data exchange

(c) Design Web Services to an appropriate granularity. Avoid creating too

fine-grained Web Services because of the network overhead incurred

for each web service invocation

(d) Assess the readiness of participating parties before implementing web

service.

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 137 of 141

5.6.4 Application Integration

Best practices for application integration include:

(a) Security & performance issues with data integration

Data integration is probably the least secure of all the integration

solutions. For example, for direct data access, the data sources must be

opened to other applications and often to the outside world. Performance

may also be an issue if large movement of data is required during

synchronisation or file transfers.

Some best practices are:

(i) Keep sensitive data out of data integration solutions

(ii) Split databases according to the sensitivity of the data

(iii) Use DBMS access control features (judicious use of access

controls by user and password can limit the vulnerability of the

data. Create new user accounts and passwords for the data

integration programs, restricting read and write access to those

tables that need to be read or written by the integration programs)

(iv) Avoid public networks - use Oman Government Network or VPN

technology

(v) Manage data access and usage

(vi) Automated data transfer may have capacity issues if it is not

monitored. Data replication may work well in the beginning but

transfer times may increase with increase in data volume. Monitor

the replication and think of alternative if performance becomes a

concern

(vii) Limit transformations. Transformations of data require processing

time and will have impact to the performance.

(b) Reduce the number of point-to-point integration

The number of connections to maintain point-to-point integration

increases exponentially when the number of integration points

increases. Agencies should avoid point-to-point integration whenever

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Technical Reference Model

Page 138 of 141

possible. Instead of having multiple applications establishing

connections among themselves to exchange data, a data hub can be

built to act as a gateway between these applications. These applications

can then only need to integrate with the hub and not with each individual

application. This eliminates the need for point-to-point integration among

applications.

However, for multiple applications to access a single hub would mean

that the hub must be able to take the load. Performance and scalability

requirements must be taken into serious considerations.

(c) Design application for “integration agility”

The state of the application determines the degree of integration effort

required. Applications must be designed upfront to allow “easy”

integration. For example, each tier (business, data, data access,

transport tier etc.) must be clearly segregated. These various

“components” are then integrated together. Such loose coupling allows

for easier integration. Tightly coupled applications suffer from difficulty in

integration, as it normally requires application changes.

5.7 Obsolete Technologies

Government agencies have to ensure that they do not have any obsolete

technologies in this domain. Please ensure compliance by referring to OeGAF

Obsolete Technologies Compliance List.

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Solution Reference Model

Page 139 of 141

APPENDIX SA-4 – Object Oriented Programming

The earliest OO methodologies – sometimes known as first generation OOAD

methods – tended to adapt structured techniques such as functional

decomposition and data flows to creating objects, while “second generation”

methodologies approach analysis and design from the perspective of objects,

transactions and messages. The third generation method, however, attempted

to integrate a number of other methods. One example is the Unified Method

that is an amalgam of the Booch (Grady Booch’s methodology), OMT (Object

Modelling technique from Rumbaugh) and OOSE (object-oriented software

engineering from Jacobsen). Table SA-15 describes the traditional method

(structured method) and the Unified Method:

OO Methodology Description

Structured Method

www.ieeexplore.ieee.org

The structured method divides an application

development project into modules, stages and tasks. It

sets out a waterfall view of systems development, in

which there are a series of steps, each of which leads

to the next step.

Some of the notations more commonly used are Data

Flow Diagrams (DFD) and Entity-Relationship

Diagrams (ERD). A DFD is a graphical technique

depicting information flow and the transforms that are

applied as data move from input to output. It is

incorporated in the analysis and design methods by

Yourdon, DeMarco, and Gane and Sarson.

An ERD is a data modelling technique that creates

graphical entities, and the relationships between

entities, within an information system. An entity can be

a person, object, place or event for which data is

collected. The de facto standard is Peter Chen’s ERD.

http://www.ieeexplore.ieee.org/

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Solution Reference Model

Page 140 of 141

OO Methodology Description

Unified Method

Cetus-links

www.cetus-links.org/

oo_ooa_ood_method

s.html

OMG

www.omg.org

UML 2.0

www.agilemodeling.com/e

ssays/umlDiagrams.htm

The Unified method encompasses the OO

methodologies from Booch, Rumbaugh and Jacobsen.

This is deemed to be the method widely adopted by

the industry.

The notation is Unified Modelling Language (UML), a

graphical mechanism for specifying, visualising,

constructing and documenting the artefacts of a

software system.

The Object Management Group (OMG) endorses the

UML. UML 2.0 supports the Model-Driven Architecture

(MDA). In MDA, the models become “executable”,

with codes being generated automatically. The “logic”

in the models can be verified before the codes are

generated. With MDA, much of the development effort

may be shifted to the level of the model.

Table SA-15: Development Methodologies

There has been a gradual shift towards process orientation in the software

development paradigm to better align business goals with ICT systems.

Understanding today’s complex business processes is a significant challenge.

Awareness of the details of the business process flow improves the quality of

the requirements assessment for system development. Such an awareness

can be achieved through business process modelling which is an activity

performed by business analysts within a company. Analysts use modelling tools

to depict both the current state of an organisation and the desired future state.

The activity of modelling a business process usually predicates a need to

change processes or identify issues to be corrected. With advances in

technology, the vision of these models becoming fully executable and capable

http://www.cetus-links.org/oo_ooa_ood_methods.html
http://www.cetus-links.org/oo_ooa_ood_methods.html
http://www.cetus-links.org/oo_ooa_ood_methods.html
http://www.omg.org/
http://www.agilemodeling.com/essays/umlDiagrams.htm
http://www.agilemodeling.com/essays/umlDiagrams.htm

OeGAF Version: 2.0

Doc ID: G&A - OeGAF Solution Reference Model

Page 141 of 141

of round-trip engineering, is becoming closer to reality every day. Supporting

technologies include Unified Modelling Language (UML), Business Process

Modelling Notation (BPMN) Model-Driven Architecture (MDA), and Service-

Oriented Architecture (SOA).

